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I.

CHAINED AGGREGATION AND CONTROL SYSTEM DESIGN:
A GEOMETRIC APPROACH

Douglas Kent Lindner, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1982

This thesis is an indepth study of the Generalized Hessenberg

Representation (GHR) of a linear time-invariant control system. It is shown

that the GHR explicitly exhibits a sequence of observability subspaces, .}

*. By studying these subspaces in this specific basis, a number of results

follow.

Having defined the subspace (-I algebraically, we introduce a topo-

logy into the subspaces of state space. Using the GHR we are able to estimate

distances between key subspaces. This leads to a measure of the degree of

observability, called here near unobservability, which formalizes the intui-

tive geometric notion that a system is "nearly unobservable" if it has an

invariant subspace near the null space of C. The relationship to other

*G measures of observability is discussed as well as its role in model reduction.

The behavior of the subspaces (Z } under the action of an input is

* also discussed. The connection to the supremal (A,B)-invariant subspace in

the nullspace of C is made, but other (A,B)-invariant subspaces are also

described. In addition, the GER is used to identify (C,A)-invariant subspaces.

Both of these subspaces play a fundamental role in compensator design. Thus,

the GUR leads to a state feedback design scheme, called Three Control

Component Design, based on (A,B)-invariant subspaces produced by the GHR.

I-



This control is hierarchical in that it gives priority to the primary design

goals. Furthermore, it explicitly identifies a reduced order model used to

meet the design goals. This results in an interactive design procedure which

allows for a trade-off between model order and computational complexity.

Furthermore, by using (C,A)-invariant subspaces, observer design is carried

out In the same framework. This leads directly to dynamic compensator design.

The results are applied to decentralized control problems, noninteractive

I control, and nonlinear systems.

Implicit in this discussion is the decomposition of a system into

subsystems based on the underlying geometric structure. We investigate this

- aspect of the GUR and show how the information and control structures are

related to physical subsystems in several types of interconnections. The role

of system decomposition in reduced order modeling and compensator design is

discussed.
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CHAPTER 1

INTRODUCTION

Recently the Generalized Hessenberg Representation (GER) was

introduced as a particular representation of a linear time-invariant control

system (1,2]. This representation was obtained by a constructive algorithm

called chained aggregation [1,2]. Only the elementary properties of the

* GHR and chained aggregation were known at this time. It is the purpose of

this thesis to present an indepth study of the fundamental properties of

* the GHR and chained aggregation. The GHR has been used as model reduction

tachnique and as the basis of a control design scheme. By describing the

fundamental structure of the GUR, insight is gained into loth of these

methodologies by both a simplification of the presentation and an extension

of the previous results. However, this investigation has wider implications.

It turns out that the GHR is connected to several basic linear system

properties which recur throughout the literature. Thus the GHR is

emerging as a common framework for the investigation of many linear system

problems. It is also the purpose of this thesis to lay the groundwork for

I future investigations.

Perhaps the most important recent contribution to linear systems has

been the introduction of geometric techniques (3]. While not detracting

4 from the importance of this contribution, it should be noted that these

methods are complementary to the older matrix methods of linear system

theory just as a matrix can be an array of numbers or an abstract operator.

I Perhaps the greatest understanding of linear system will come when these

two approachs are fully merged. It is the general approach of this thesis
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to make explicit use of both of these techniques for an indepth study of

the GHR.

The original presentation of the GER was in a completely matrix

format (1-2]. The starting point and most fundamental result (for this

work) is a geometric interpretation of the GER and chained aggregation.

This turns out to be a sequence of subspaces {t~}, called here i-th

unobservability subspaces. These subspaces are well known (4-5] in the

literature, however, they are usually introduced to identify a particular

subspace, tn' which turns out to be the unobservable subspace. The other

subspaces do not seem to have been exploited.

Having this twofold interpretation of GHR, we are able to extend

the understanding of the GHR in three directions. First, we introduce

a metric on the subspaces {ti}. While this is easy enough to do in an

abstract setting [6], it is the GHR which provides the quantities to

estimate relevant distances. Secondly, we study the subspaces {zi} under

the action of the input. By modifying chained aggregation, the GHR

identifies the interaction of the input and output and so provides a

natural vehicle to study the closed-loop version of f }  L'C}. Thirdly,

we study the implicit system decomposition induced by the subspaces {t }

and their closed loop relatives. By representing the system in an explicit

basis, we are able to identify how physical subsystems relate to the more

abstract information subsystems identified in the GHR.

Perhaps the major contribution of this work is the unification

of these ideas into a single framework, the GHR, so that their interaction

can be evaluated in a single context. There are a number of benefits

which follow from this unification, many of which have not been explored
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yet. In order to show the usefulness and flexibility of this approach, we

discuss model reduction and control design using the GHR.

By combining the system decomposition with the topological

characterization of Ut we obtain a unified approach to several standard

model reduction techniques [7-l11. The GHR was originally introduced as a

reduced order modeling technique [1], and we are able to deepen our under-

standing of its role in model reduction. If the system decomposition is

combined with the closed ioop subspaces {t 1 1, we obtain a control design

procedure called the Three Control Compo nent Design (TCCD). Originally

introduced in [2] in a matrix format, the geometrical interpretation obtained

here not only simplifies the presentation, but extends those results by

removing some of the original restrictions and applying the procedure to

other problems such as noninteraction problems, nonlinear systems, and

dynamic compensators. We feel that even more insight will be gained by

combining these ideas with the topological characterizations of [Z }. A

few preliminary results in this direction are discussed.

While combining these ideas is important, some of the results

are of interest in themselves. In particular, the topological characteri-

zation of the U. seems to be the first result in this direction. A

related approach was used in [121 to measure the distance between two

4 particular subspaces, but it is not clear that this could be generalized

beyond this special situation. The result of this analysis is a mea'sure of

the degree of observability. The approach here is different from past

4 approaches [13-19] and the results are slightly different. These relation-

ships are discussed in detail below.



In discussing the behavior of the subspaces (t i under feedback,

we identify a maximal set f.C*'. These subspaces turn out to be veil known

[20-22) with a matrix version of them appearing earliest as Silverman's

Structure Algorithm [21]. A completely abstract characterization is given

by Wonham (3] and Basile and Marro [22]. However, we are able to identify

other sets of closed loop subspaces (t I which have important implication

for compensator design. These'-characterizations appear to be new. The

L
connection between U C I and (t C I is also new.

The algorithms developed in the analysis of these problems

present themselves for numerical computations. Concurrent with this work

there has appeared a numerical analysis of chained aggregation (22,23] and

the algorithm to compute {.C*I [24]. These papers were presented from a

computational point of view which differs greatly from the approach here.

We note that the numerical success apparently rests on the use of orthogonal

transformations, of which we make theoretical use here. Hence, the proce-

dure here, particularly the design procedures, show great promise for

numerical implementation. This work is underway.

*This thesis is organized as follows. The GER and chained aggrega-

tiou are briefly reviewed in Chapter 2 and the main results are presented in

Chapters 3--S. These results discuss, respectively, the open loop geometry,

* including the topological characterizations, the closed ioop geometry, and

system decomposition. Chapters 6-8 use these results in discussion well-

known problems such as model reduction and compensator design. This shows

* the usefulness of the GIM framework as well as identifying problems for

future study. The conclusions are in Chapter 9.
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Notation. All matrices and maps shall be denoted by capital

Roman letters and vector spaces by capital script letters. If A:Z'-1% then

the null space of A is denoted by ?Z[A] and the range space of A by R(A].

The dimension of a vector space is denoted by d(-). By

[1
we mean the vector space generated by the given vector as the nonzero

elements vary over all of the reals. If the subvector x in (1.1) is

replaced by a matrix X, then (1.1) means the vector space spanned by the

columns of that matrix.

The set of eigenvalues of a matrix A are denoted by A(A). An

element of this set is denoted by X i(A). The largest and smallest eigen-

values of A are denoted X(A), X(A), respectively. The set of singular

values of A are denoted by a(A) with other notation like the eigenvalue

notation. Recall that if A:ZV' where X is an n-dimensional vector space

equipped with the two-norm, then IAI ZY(A). In this thesis, we shall use

only two norms. If two vector spaces Z and j are orthogonal to each other
I

write X1 7. The orthogonal complement of a subspace X is Z

The trace of A is written tr A.

The expectation of a random variable is written E(-}.

Define

(AIB)i = 6[B+AB+ ... +A i- 1 . (1.2)

Then (Alp) (AJB) is the controllable space of the pair (A,B).



CHAPTER 2

PRELIMINARIES

2. 1. The Model

In this thesis we will be concerned mainly with continuous linear

time-invariant systems of the form

i(t) - Ax(t) + Bu(t), x(O), t!O (C.l)

y(t) - Cx(t) (C.2)

where xE R, uE Rm , ye e, and (AB,C) are appropriately dimensioned constant

matrices. Denote the state, input and output spaces byZ -Rn, m-.R, and

Rr
14 Rr , respectively. Then we can think of (A,B,C) as representing maps.

In fact, many of our results are derived from the algebraic and geometric

properties of (A,B,C) and, therefore, apply equally well to discrete systems

of the form (C.1)-(C.2). Usually we shall not state the results for discrete

systems except in discussion certain subspaces in Chapters 3 and 4. These

subspaces have very nice interpretations in the discrete case which do not

exist for continuous systems.

Most of our results also generalize to systems in which (C.2) is

replaced by

y(t) = Cx(t) + Du(t). (C.2')

For the most part, these extensions are straightforward. A special section

is added where necessary.

* Without loss of generality, we will always assume B has full

column rank and C has full row rank. We make no special assumptions
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concerning the observability or controllability* of (C.1)-(C.2). In fact,

these concepts are so fundamental we rarely uetion then explicitly. In

most cases it is obvious where these assumptions apply.

2.2. The GHR

The basis of this thesis is a representation of (C.1)-(C.2), called

the Generalized Hessenberg Representation (GER) C 1]. A system can be trans-

formed into a GHR by chained aggregation [ 1-2 3. This consists of con-

structing a finite sequence of state space transformations as follows. Let

T1 be an nxn nonsingular matrix such that

CT1 M 1C 0] (2.2.1)

where C has full column rank r1. (Since we have assumed C to have full row

rank, C1 is a square nonsingular matrix and r1 - r. We shall use this fact

without explicitly stating it.) Interpret T as a state space transformation

x T1 [] (2.2.2)
Xr

and apply (2.2.2) to (C.1)-(C.2) to obtain]

[Al A 2 + u 
I]

r 2 22 (2.2.3) 1

y- [C1  o] . .y

For discrete systems, think reachabiitty.
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This completes the first step of chained aggregation. If A 1-0 or

d(x')- 0, then the algorithm terminates and the system is in GHR.r

If neither of these conditions hold, then the second step (second

transformation) is this.- Let S2 and T2 be rlxrI and (n-rl)x(n-rI) nonsingular

matrices such that

L[AIT2 oj-[F12  0] (2

0 0 (2.2.4)

where F12 is a r2xr2 nonsingular matrix. Define the state space trans-

formation

-1

y

x; T 2  * (2.2.5)

2
x

r

Then (2.2.3) becomes
-±1 - "-1" " .

ii1 11 1 1
-11
Y Fl 12 0 0i

.l :2" = "-".....:.......... ..... .. ." . .... u (2.2.6)

y A21  21 22 23 2 (2

x A A A 4 A x BL r LA31 31: 32 33. r 3

or
y F l F 12 0 O G 1

S A2 A2 A2 y + B u  (2.2.7)..a1..[.... ....
31 32 331 ] . 1

y - [Ht1 0 0 Y
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This completes the second step of chained aggregation. The algorithm

2terminates if A23 a or d(x 0. If these conditions do not hold, the
23 r

' third transformation is defined analogous to the second by replacing A12 in

(2.2.4) with A23. The algorithm then proceeds until on the Ith step

A , 4+m 0 or d(x )- 0. It is easy to see the t;n. Then each transformation

as described in (2.2.5) will be called one step of chained aggregation.

After i steps of chained aggregation, (C.l)-(C.2) has the form

y F F 0 ........ 0 G
F11  12 1

.2FFy F21  F22 F 23 . .(2

i."

A = .i ................ Ai+x +i+1  L B- 1

S0 ........ O]x

*Note that the transformations are chosen such that ? (F ]-0 forj
j~j+1

j-,.,i1 In (2.2.8) we identify two interconnected subsystems; the

i-th aggregate given by

11 12 1.....
SF 21  F 22  F 23  0

. 0
LyiJ "

= i + G i

y- =H 1 0 .... O1ig



10

and the i-th residual given by

"~ + '!,i~i:•

w F x .
1.9+1 r

If in (2.2.8) Fi, +i-O then chained aggregation terminates and we say that

the system (2.2.8) aggregates.

61

6q

a

I



CHAPTER 3

GEOMETRY OF THE GHR

3.1. Introduction

In this chapter we present the first set of fundamental results

concerning the geometrical interpretation of the GHR. In particular, in

,* this chapter we will be concerned with open loop geometry of the GHR. That

is, throughout this chapter we will assume that u(t)- 0. We identify a

nested set of subspaces that are intimately related to the observability

structure of the system (not surprisingly). The second section is devoted

to an algebraic characterization of these subspaces and their relation to

some system invariants.

In the third section we introduce a topological characterization

of these subspaces. This is based on some results by Stewart [26] so we

review them there. Basically, this analysis allows us to relax the subspace

containment condition which permeates geometric system theory. For example,

a system is unobservable if ?Z[C] contains an A-invarian,: subspace. Our

characterization allows us to say that the I[C] is near an A-invariant

4 subspace. It is shown that this characterization is related to the canonical

angles between subspaces giving it a very geometrical flavor.

This analysis allows us to measure the degree of observability.

This is a long-standing problem [13-19] and we relate our measure, called

near unobservability, to several other well known measures in Section 3.4.

It turns out that nearly unobservable systems are characterized by 1) a

4 certain geometrical relation between observability subspaces and the A-

invariant subspaces and/or 2) separated eigenvalues. In general these two

-4
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properties interact in a complex way to determine the structure of the

operator A. Separated eigenvalues are a characteristic of singularly

perturbed systems [27] and there is an interesting connection between

explicitly perturbed systems and near unobservability (22]. We examine

this in Section 3.5. A simple example is included in Section 3.6 to

illustrate the basic ideas involved.

3.2. Observability

In this chapter we will study systems of the form

- Ax (3.2.la)

y - Cx, (3.2.1b)

i.e., the observability structure of (C.I)-(C.2). The following definition

is a well-known characterization of observability.

Definition 3.2.1 ( 4]: The vector CEEZ is an element of Lj, the j-th unob-

6 servable subspace if C =x(O) implies y(O)i(0) .... y(l) (0) - 0. By

definition, 0 a Z.

If the system representation contains an input, it is assumed to be identically

zero for all t.

The discrete version of Definition 2.1 gives a more intuitive

characterization of the subspaces X.. We list it here for completeness.*3
For the discrete version of the development here, see [28].

.
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Definition 3.2.1 (Discrete):" The vector CEZ is an element of t if -x(O)

and y(O)- -.. "y(j-l)mO. t !"Z:. 0

The following proposition gives a well-known characterization of

the subspacen Z for (3.2.1).
Proposition 3.2.2 [ 5]: - ni([CAi

j1-0

Proof: From (3.2.1b)

y(O) - Cx(0) - 0 (3.2.2)

by Definition 3.2.1. Hence, -71 (C]. Similarly

(0) - CW() - CAx(O) - 0. (3.2.3)

Since Definition 3.2.1 requires that both (3.2.2) and (3.2.3) hold, we have

t 2 -7Z (C] 17Z [CA]. (3.2.4)

Induction completes the proof. o

By elementary properties we have the following corollary.

Corollary 3.2.3 (201:

1) £ is a subspace.

2) t Ct JC
2)Jj Ctj+1 .

3) There exists an 9_<n such that £i CCJ+ is proper for j < I and X-CX

for all J _> .

4) t. are invariant to a change of basis in the state and output spaces.J
5) £ is the standard unobservable subspace.

Proof: The first two statements are obvious. The third statement follows

from the fact that if Z j zj+, then CAJj 1=0. Hence, A. C. or C. is A-

invariant. This implies £ .Z for all i> j. Therefore, the sequence
i

must be strictly decreasing until equality holds. lie have X< nr by the



14

finite dimensionality of Z. The fourth statement is easily proved by sub-

stituting R-Tx in Proposition 3.2.2. Let a be the unobservable subspace

If x(0)exC, then y (k )-0 for all k 0. Thus X9CC . Also if x(O) eo

then y(t) - 0 Vt implyingO C t. Hence, 5) follows. a

By 4) of Corollary 3.2.3, the subspaces £ must be connected to a

set of invariants for the pair (A,C). Indeed, define the numbers

ri d(_ - i-l,...,.L (3.2.5a)
i l

Y - r1  (3.2.5b)

"L- max{1a : ra zJ} j1i,...,Y. (3.2.5c)

Then the list {ci' ifr} is the well-known observability indices. For a

proof of this and a further discussion of these indices see Wonham [3 ].

The number L is sometimes known as the observability index (3 ].

The unobservability subspaces are intimately related to the GHR.

After i steps of chained aggregation let the system be represented as in

(2.2.8). Then we have

Theorem 3.2.4 [ 28

0

j+1

£ = sp . j l,...,i-I•j 2.

i
r

6 Li -
f sL. i+ [ii~ ]

6,
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Proof: The proof is simply a specific basis version of the proof of

Proposition 3.2.2. The result is trivial for i-l because of the representation

of C in (2.2.8). Suppose the theorem holds for J-l,...,i. By Corollary 3.2.3,

we know that tiC i . If x(O)Eti and x(O) [Fi ~], then 1(0)#0.

Since 7Z[F j+l]# 0 for j-l,...,i (by construction of the GHR), it follows

that

(0)' Fj (0jji2 jy i )#0 j(,0) ,i. (3.2.6)

Thus, by Definition 3.2.1, x(0)4 Ci+l' or 7[Fi ] C+i On the other

hand, if x(O)E77[Fi,i+l], the same argument shows y(i)(0)..0 for Jml,...,i,

and £i+ICj[Fi,+lj] implyingt i+l7 [F i +" 0

The GHR is a particular basis which explicitly displays the sub-

spaces £j, jul,...,£, one subspace being identified at each step of chained

aggregation. In particular, it will display the unobservable subspace. This

has lead some authors [23,24] to suggest chained aggregation with orthogonal
I

transformations be used to compute observability subspaces.

The last remark made implicit use of the fact that the transforma-

tions in chained aggregation are not uniquely defined. In fact, some of

the work below is aimed at using this nonuniqueness in various ways. What

then is unique about the GHR? The following corollary is so easily proved,

the proof is omitted.

Corollary 3.2.5 [291: The numbers r., defined in (3.2.5a), are the dimensions
o

of the diagonal blocks F. ., j1,. ... ,i.
J ,J

4 -

Pj
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The subspaces Li supply the foundation of the geometrical analysis

that follows.

3.3. Near Unobservability

3.3.1. Norms

In the last section, we introduced an algebraic characterization

of the subspaces ti. It would clearly be useful if a topological charac-

terization could also be provided. The GHR provides an approach to this

problem. If in (2.2.8) F -0, then -£ - C and C is an A-invariant
i,i+l i 1*1 i

unobservable subspace. Thus, if Fi,i+l I is "small," £i should be "near"

an A-invariant subspace. This idea was recently suggested in (30] but

no system interpretations were given.

To make these qualitative judgments, we need to introduce norms

into the system representation (3.2.1). To motivate our approach assume an

L -norm on the space of output functions {y(t), 0: tsT}. Then

TT T A
2 ff yT(t)y(t)d t = xT(o)(f eA tCTceAt dtx(O)

0 0 (3.3.1)

= xT(o)K(T)x(O)

where K(T) is the well-known [31) observability gramian. Since K(T) is a

positive semidefinite matrix, (3.3.1) provides a direct relationship between

the initial states and the corresponding output functions. If lx(0)1 = 1 and

ilyll is "small" then x(0) is said to be "weakly" observable [10,17,32]. More

* generally, we can characterize the degree of observability via the properties

of K(T) [10,13,16,17,32]. However, we will not pursue this approach directly

because of the difficulties of computing K(T).
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The above analysis shows there is a direct relationship between

* the natural norm on the space of output functions and the natural Euclidean

or 2-norm in the state space Rn. Our approach is to analyze the subspace

geometry with operations which preserve the two natural norms and the

relationship between them. Thus we restrict the transformations in chained

aggregation to be orthogonal state space transformations. These operations

yield systems algebraically equivalent to the original system so that all

the usual algebraic information is preserved. All norms on Rn are the two-

norm

lxi = +(x x) '2  (3.3.2)

and its subordinate operator norm

I Axi
1A1 - sup lxi (3.3.3)

x

Both of these norms are invariant to orthogonal transformations on Rn as are

the essential properties of K(T).

To summarize, we shall measure "near" unobservability by measuring

the "nearness" of £1 to an A-invariant subspace 1(. The measure will be

given in terms of certain properties of an orthogonal matrix which trans-

forms 1 intor . These transformations preserve the natural norms on the

output function space, the state space, and K(T). However, K(T) need not

be computed. The exact relationship to K(T) will be investigated in

Section 3.4.

Implicit in the selection of the norms above is the issue of

scaling. Since we are not using limiting arguments, the relative magnitudes

of various quantities are meaningful. For instance, by properly scaling a



basis and then choosing the basis-dependent norm (3.3.2), we can say the

initial conditions are evenly distributed over the unit ball. This raises

a difficult and unsolved problem which we will not address here. It is

only our purpose to set up a framework in which this problem is easily

incorporated (if there is one). In any case, it should be noted that this

question plays a fundamental role in the use of the theory below.

3.3.2. Computations

To provide a precise characterization of the distance between

certain subspaces, we will use results by Stewart (261. There, in the

context of numerical analysis, Stewart characterizes the nearest A-

invariant subspace by describing the properties of a rotation needed to

carry the given subspace into an A-invariant subspace. To apply those

*results to our problems we first suppose t hat (3.2.1) is represented, after

one step of chained aggregation (using an orthogonal transformation) as

(3.3.4)

y= [C1  0I

In this representation, the natural basis for Rn yields an orthonormal basis

I
for L andC L That is

L=[r (3.3.5)

n 1
is a basis for R such that the first r columns span Xi and the second n-r

columns span Z Now an algebraic characterization of Stewart's notion of
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nearness (26] is expressed as

V -(V V - LP (3.3.6)

c

where ft[V]- V is an A-invariant subspace and P is an orthogonal matrix

given by

_p T r 0 (I+PTP) /2 (3.3.7)
n-r

where the square roots are the unique positive definite square roots of the

indicated matrices. Thus P rotates I to 7.

A useful geometrical interpretation enters through the use of

canonical angles.

Definition 3.3.1 [26,34]: Let 4 and V be subspaces of Rn with orthonormal

bases U and V, respectively. Let a be the singular values of uTv. Then

the canonical angles between 4 and V are the numbers

-l
6i = cos ai" o

To apply this definition to Z and V, we first obtain orthonormal bases from

(3.3.5)-(3.3.7). Thus we have

LTV = (I+P TP) - '2 (3.3.8)

Let P have singular values a,. Then the canonical angles between £ andV

4 are given by

- 2-e i  cos (1+ a i ) . (3.3.9)

It follows that

a, = tan 9.. (3.3.10) 7
1
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By choosing P in (3.3.7), P rotates X to a subspace V and the canonical

angles are directly related to a(V). For future use, let

G - diag(O i )

cos e - diag(cos 6i)

and similarly for sin e and tan 0. Then

IPI - Itan 01

T-Y
IP(I+P P)-I - Isin 01 (3.3.12)

I(I+PTP)Y2 - Isin 01.

See [261 for a more complete geometric discussion.

Thus far we have translated the problem of finding subspaces near

£i to choosing a matrix P in (3.3.7). If the rotated subspace V is A-

invariant, thenr I A'Y(V). In the matrix form (3.3.6)

VTAV - 0. (3.3.13)
C

Substituting (3.3.7) in (3.3.2) and (3.3.6) and using the representation of

A in (3.3.4), (3.3.13) becomes

ppT) 1/2 /2
(1+ (AIP-PA4 + A2-PA 3P)(I+P P) 0 0. (3.3.14)

Thus, if V is an A-invariant subspace then P in (3.3.7) must be a root of a

• Riccati equation (3.3.14), which we write as

A P-PA = PA P-A. (3.3.15)
1 4 3 2*

The exact solution of (3.3.15) is known [35), but it requires knowledge of

the eigenvectors and eigenvalues of A. Instead we will use a bound on P

given in terms of the coefficients of (3.3.15). Stewart [36] has done a

6
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careful analysis which goes like this. First note that

T(P) -A P- PA (3.3.16)1 4

is a linear operator in P. Hence, if A is small enough the quadratic term
3

in (3.3.15) can be neglected and we obtain a bound from the approximate

linear equations

IP itT - A 1 (3.3.17)

The exact statement is as follows:

Theorem 3.3.2 [26,36]: Let 6-I I, T=1Ay , n=OA . Then if

_Xn_ < 1(T. )

62 4

there exists a matrix P such that

,IN < (T. 2) a

We note for future use that if A 30 ((3.3.15) is a Lyapunov equation) (T.1)

is always satisfied so that bound (T.2) always applies.

From the preceding analysis we immediately have the following

theorem:

Theorem 3.3.3 (261: Assume that Theorem 3.3.2 holds. Then there exists

a P satisfying (T.2) such thatVr -A[V] is an A-invariant subspace.

Furthernore,

X(A) = X(A')u A(A')

where

X (AI)= XE(I + PPT) '2 (A -PA3 ( + ppT) '/2 ]

X(A4 ) - X[(I+pTpP) (A4 +A 3P)( l+PP)I.
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Theorems 3.3.2 and 3.3.3 give an estimate of the nearness of £ to V.
1

The results on eigenvalues in Theorem 3.3.3 are obtained by simple algebraic

manipulation. It conveys the intuitive idea that if IPI is small, the

eigenvalues of A1 and A4 approximate the eigenvalues of A. For a detailed

discussion of this point, see Stewart [26].

3.3.3. Subspace topology

Thus far we have characterized the relation between two subspaces

£ and V in terms of a rotation. These ideas are related to the following
1t

subspace topology.

Definition 3.3.4 [ 6 ]: Let 74 and 7 be subspaces of Rn . The gap between 14

and 7 is the number

I T (4,V) - max{ sup infi v-ut, sup infi v-ult. a
lul-i1 VEV Iv-1 uE ?-

Since we are using the two-norm, the gap function T is a metric which also

preserves dimension. See [ 6] or [26] for further properties. The gap

function is related to canonical angles as follows. Let the canonical

angles between 24 and V be e..

Proposition 3.3.5 [261: tCLV) - Isin 01.

Hence, if the canonical angles between two subspaces are small, they are

close in the gap topology.

With this background, we are ready to introduce and discuss near

unobservability. Let E > 0 be given.
0

Definition 3.3.6 (33]: If for any i< Z

T(GC ,1) Oi 0
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for some A-invariant subspace V, then we say the subspace Zi is nearly

unobservable. a

Selection of the number c simply means that in the context of a0

particular problem, we are judging the subspaces L and V to be close in the
±

gap topology. What is small involves a number of issues including scaling.

However, as we discuss near unobservability in the context of other observ-

ability measures, as we will do below, various criteria for judging

"smallness" will emerge.

At first glance, Definition 3.3.6 appears to be hzrd to use because

of the abstract nature of all quantities involved. However, from Proposition

3.3.5 and (3.3.12), we have that

r(.C V) Isin O1 < Itan 01 1 IPI. (3.3.18)

So it is enough to estimate lPI. In fact, the discussion leading up to

Theorems 3.3.2 And 3.3.3 set up the framework for estimating r(1i, ) " The

calculations are given in Theorem 3.3.2. The estimates are obtained from

submatrices read off from the GHR. Thus by imposing some more structure on

the GHR, we are able not only to explicitly identify the subspaces Xi. but

also estimate the distance to A-invariant subspaces directly from the GHR.

3.3.4. Irterpretations

Assuming that (T.1) is satisfied, API (measuring the nearness of

£ to ) depends on two quantities, y and 5 which we will discuss in turn.

First, we will see thac y is a measure of the deviation of X1 from V. If

C is an A-invariant subspace, there exists a matrix B such that

AL1 M L B. (3.3.19)
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If £ is not A-invariant, for each B we define a residual matrix R as
!1

R - AL -LB. (3.3.20)

Consider the problem of finding a B to minimize IRI. In the basis of (3.3.4)

we have

A2

IR - • (3.3.21)A~4_

Clearly, B-A22 minimizes IRI and IPJ IA 2I -y. Note that the dual of this

problem is Aoki's aggregation problem [ 8].

Consider next 6. It is well known [37] that the spectrum of T(P)

is given by

A(T) - {A-X'IXE X(A11), A'EA(A22)}. (3.3.22)

So T is invertible if and only if A and A have no eigenvalues in common

(which we shall assume throughout this thesis). It is also seen that

6 - IT-I inf IT(P)I (3.3.23)
IPImI

from which it follows that

* 6 : minIX(T)I. (3.3.24)

This shows that if the eigenvalues of A and A22 are poorly separated,

then the bound (T.2) is not small. The converse is not necessarily true,

because the inequality (3.3.24) may not be tight. The exact relationship

between X(T) and 6 is not well understood, it being similar to the relation-

ship between eigenvalues and singular values of a real matrix. However, if

A 1 and A4 are diagonalizable, we have the following result. Let S. be a

1 4

[ . .. .. - - u f " . - - -q
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complete system of eigenvectors for Ai and define

K(S) S Is Is *1. (3.3.25)

Proposition 3.3.7 [26]:

6 > minl(T)I D iniX(T1.
c(S i )K(5 4 ) . a in(r,n-r)

q
In the special case when A, and A are Hermetian, S1 .is a unitary matrix.1 4

Hence K(Si)- 1 and 6 is directly related to eigenvalue separation. Following

Stewart [26] we will use the notation 6- sep(A1 ,A4).

In this section we have discussed an explicit measure of the

distance from £ to an A-invariant subspace V using the GHR. Because of

the lower block Hessenberg structure it is trivial to extend this analysis to

any subspace £i"

*3.4. Weak Observability

3.4.1. Observability gramian

In this section we will relate near unobservability to more well

known notions. We begin with the widely used measures of the degree of

observability via the observability gramian (10,13,16,17,32]. We will restrict

ourselves to systems (3.3.4) which are stable and assume Ti in (3.3.1).

In this case K(m) K is the solution to the Lyapunov equation

T T
KA+4A K = -c C. (3.4.1)

4 The measures on K may be interpreted as follows. Let the singular value

decomposition for K be

-4--' " - - I I l J n | m im • I
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:2][Ul U2] - K (3.4.2)

where Z are real diagonal matrices with elements c
£ i

Definition 3.4.1: If

for all j,J', then we say the subspace724 =[U2 ].is weakly observable. a

By introducing the topology of the last section, we could extend this notion

1 by including all subspaces in the neighborhood of42. 2 Also, other measures

on Z1 and E can be used.
2

Assume that the system is represented as in (3.3.4) and that K

Nhas been computed from (3.4.1) with respect to the basis in (3.3.4). Consider

V-P in (3.3.7) to be a state transformation

[r]= P [Q [[(3.4:3)
Xr ir LP21 P 22J r

Furthermore, assume that £ is nearly unobservable and that P has been chosen
1

* in (3.4.3) to carry £1 into an A-invariant subspace r . Note that from

(3.3.7) and (3.3.12), IP 1 icos 01 and NP 12 -Isin 01. Since C1 is

nearly unobservable, IP I2 is small.

Compute

0
pTAp 1 =(3.4.4a)

[A3  A 4

CP - [C1P11  C1P2 1] = C (3.',.4b)

PTKPA + ATpTP _ _T (3.4.4c)

L
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where

p T1P 2T (3.4.5)

K3

11 AK 1

Then from (3.4.4c) we obtain

KA -TKI + AIK -- PII CTCIP (3.4.6a)

4 T T 1T 1 33 (3.4.6b)
. K2A4  1 A 2 =- 11 1 1P21-

KA +AK = -P T CT CP (3.4.6c)

3 4 4 3 - 21clclP2l.

* What we would like to show is that K is nearly a block diagonal

matrix and that the spectra is separated. This implies that V is a weakly

*observable subspace and so relates near unobservability to weak observability.

The approach is to apply Theorem 3.3.2 to (3.4.6). This will give conditions

under which the spectra is separated and K is almost block diagonal.

Motivated by this observation we apply Theorem 3.3.2 to (3.4.6c)

to obtain

21CI| 2 Isin Of 2

IK3I < (3.4.7)
36

4

4 sep(A 4 -A4.

Let S4 be a complete eigensystem for A4 . Then if K($4) 1, we have from

* Proposition 3.3.7 that 6 is approximately twice the smallest eigenvalue of
4

A4" So if the eigenvalues of A4 are all large and since Isin GH is small,

it follows that UK 3I (= largest eigenvalue) is also small.

0 The next step is to bound the lower eigenvalue of K to show that

the spectra of K and K are separated. We can do this using the results in
1 3



28

(38]. To this end let a(X) denote the smallest singular value of X. Then

for (3.4.6a) we have

a(C(i+p ) )
a(K1 ) > 21 A11 (3.4.8)

Thus if IA 1 is small (implying small eigenvalues) and (3.3.4) is nearly

unobservable (implying ai(Pl)= ai(cos G)f 1), then a(K I ) will be large.

Taken together with (3.4.6), this implies a separation in the spectra of K

and K . It follows from Proposition 3.3.7 that 6 K=sep(Ki,K4) will be large.

• Finally, we compute a bound for K . Again we apply Theorem 3.3.2

to (3.4.6b) to obtain

1Ki 2 f2A K1+ 212I < - [21A -1K3 1 C I sin GI.-icos 0A]
14 (3.4.9)

-T-

6 =. sep (A ,-A 4 ).

This bound contains some interesting information. For K 211 to be small weE2
must have: (1) (3.3.4) is nearly unobservable (Isin 0i is small), (2) 614

is large (X(A1 ) and X(A4) are separated). (3) RK 3 is small, and (4) RA3

is small. The first two conditions entered into deteiinining the near0

unobservability. The third condition relied on the fact that A4 contained

large eigenvalues. Hence, the separation between X(A1 ) and X(A4) must
A

occur in a special way. Finally, if RA 3 is small then (3.4.4a) is almost
I.

block diagonal. This is interpreted as meaning thatjr is near an A-

invariant subspace (apply Theorem 3.3.3!). This imposes additional

* structure on the eigenstructure of A and represents the difference between

weak observability and near unobservability.

6
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4.2. Trajectory Analysis

Another way of interpreting near unobservability is to consider

the evolution of the state. Intuitively, we can think of the state

evolving on two A-invariant subspaces, V 1 and e2" Furthermore, suppose 2

is near £I" 7C]. Thus, the projection of the states in V on the output

is small so that they should be "nearly unobservable."

q We can make these ideas precise by again considering the trans-

formed system in (3.4.4a),(3.4.4b). Given an initial condition, the states

evolve as

()=e 9(0) (3.4.10a)
A tt A4 (t-T) A (T)

(t) A4t (0) + f e 4 3 e 1 (0)dT (3.4.10b)r r 0 3

Thus, from (3.4.4b) the output evolves as

y(t) = C1 (P11 (t)+P 12*r(t)). (3.4.11)

From (3.4.10) and (3.4.11) we can get an estimate of the contribution of

r (t) to the output y(t). First, letr

x A(i ) i 14 (3.4.12)
im 2 ' i=1,4.

Then it is shown in [39] that

t x .te _ e Im i=1,4. (3.4.13)

Now
4mtt 14me(t-r) lM dT

-4e i '(O)i +11A311"9(0)1lf e dT

x4mr U A311 -.11 y (0) 1l X mt \kint .
4m , o+-34

< e II&'(O) + ( e (3.4.14)r i l -4m I Ce"
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Combining (3.4.14) with (3.3.10) we have

X 1Mt X4mt
ly(t)l S IC 1I(IP 1 119(O)le + IP 121[e I r(O)l

IA31 -I*(0)1 X4mt elmt
+ T.-5Jfl l - e I]]. (3.4.15)

ixm x4m e

The estimate in (3.3.14) is good for each value of t whereas the analysis

U by observability gramian is the integral of the square of (3.4.16).

This bound again shows all the structure of weakly observable

systems.

3.5. Singular Perturbations

It is clear that near unobservability is closely related to time

scale separation. It enters through the dependence of 6 on eigenvalue

separation in Theorem 3.3.3. As an application of the ideas in the previous

sections, we will discuss near and weak observability in singularly perturbed

systems. In this section we will consider systems of the form

0 A A (3.5.la)

• y = [C1  C2 ] .I (3.5.1b)

First, we would like to compute the asymptotic eigenspaces of the

slow and fast modes of (3.5.1a). We use Theorem 3.3.2 to see how near the

eigenspace of the fast modes is to
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vf '( •(3.5.2)

From Proposition 3.3.7 we have

6 Sep (A sep ( A 1A) -- -

(3.5.3)

>1D x

for some X e(A 1) and XE X(A4. Then from Theorem 3.3.2 (T.1) becomes

IA2I -IA31 2
2 0 as e -0 . (3 .5 .4)" 2 £ 62

6 6
C 0

So for small enough E, Theorem 3.3.2 applies and P is bounded as

aPD < : _ - 0 as c- 0. (3.5.5)
£ 0

Hence, the fast eigenspace tends to V (3.5.2) as F--0 by Theorem 3.3.3.
A4

Also note that from Theorem 3.3.3, the fast eigenvalues tend to X(-) since

11 P11 - 0.

To estimate the slow subspace V s we chose P to place a 0 in the

(2,1) block of (3.5.1a). The necessary condition (3.5.4) still holds so that

an estimate for I! P II is

4 f Pj _ f!A 3 1! = - A3 H1  as E 0 (3.5.6)

6: 0 a 1 1
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Vfrom (3.5.3). From (3.5.6) we might guess that

-T -A 4  A3  (3.5.7)

so that

s SP IA3 (3.5.8)

and the slow eigenvalues are tending to X(A.-A 2A4;A) from Theorem 3.3.3.

(We are rotating into the subspace spanned by the first r columns of P in

TT
.Q(3.3.7). This requires that Theorem 3.3.3 be modified as X(A) -A(A.- 2  )

u X(Ay+PTA2).. This is confirmed in [27].

Now ifX(Ao) and A( ) are both stable for small enough e, can
4

these results be related to weak observability? In fact, we can apply the

analysis of Section 5.4 almost directly. Now C in (3.5.1b) replaces C in

(3.3.4). Then C in (3.4.4b) becomes

C = [C1(I+PPT) +c 2P(I+ppT)-/2, CIP(I+PTP)-2 + C2 (I+PTP) -2. (3.5.9)

This causes the bound for 1K 3 to become

|3

I
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.3

222C2 2 2 2
I IK 31 ine Il2s +21C IIAc 211 sin 01-1cos 01 +IC 2121 cos el2 i

22
= [ICIsin el+Ic IICos . (3.5.9)

4

It is easily seen that 6 4- as c10 so that eventually the bound in (3.5.9)

becomes useful. However, a strong component of the fast modes in the output

(lC21 large) requires that the fast modes be sufficiently fast.

The lower bound on the eigenvalues of K is only increased by the

presence of the fast component in the output.

From (3.4.9) the bound on K becomes
2

1K2 1 [21A 3 .1 1K3I + {[IC1 2 Icos Gl lsin em14

+1C 11C2 II cos 01 +lsin 0l]11. (3.5.10)1 23cs
1

It can be shown that behaves as - A as c- 0. It is also easily seen

that 6 14 - as e- 0. In fact, it is not hard to show that

13 1 -1I' A7 1 -0 A I as c-0. (3.5.10)
4 314

From (3.5.8) we know that K I- 0 as F-0 so that the first term on the RHS
3

of (3.5.9) goes to zero as e- 0. Note, however, that the convergence is much

faster if s litf or nearly so. This asymptotic limit is a property of

(3.5.1) for -1.

The second term in (3.5.9) also goes to zero as --0 because

Icos 09 and Isin 01 are bounded by 1. However, the presence of the fast

variables in the output again slows down the convergence because this term

contributes a constant. Indeed, if IC2 I is large, fast dynamics are again

I-
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indicated for the fast states to be weakly observable. Similar results were

obtained in (40] in a closed loop context.

The analysis in the last two sections clearly shows the connection

between near unobservability and time scale separation. Since the computa-

tions do not depend explicitly on e, this may be a useful method for identi-

fying time scales.

3.6. A Simple Example

In this section we will consider the following second order

system

y -(1 0 [] (3.6.1)

1 x

which is already a GHR. Then if follows from Theorem 3.2.4 that

60

£x [ (3.6.2)

The eigenvalues are Xl-a and X2=d with respective eigenvectors

-2
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rlmi (3. 6. 3a)

r 2 -a] (3. 6.3b

To apply Theorem 3.3.2, first note that transformation P in (3.3.7)

is given by

I

(3.6.4)• ' i_. Cos 8 sin e1

I-sin 6 cos6

where 6 is the angle between the x2-axis and the second column of P.

Now in this example the quantities in Theorem 3 3.2 are computed as

4 follows:

y - IbJ

n a 0 (3.6.5)

(T.1) 0 <
2 4

(T.2) lip 21b

L -- - - - - -
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CHere (T.l) holds trivally. (In general, (T.1) applied to a second order

system is just the condition that the system have two real roots.) Now

compare r2 in (3.6.3b) to the second column of P in (3.6.4) to the bound (T.2)

in (3.6.5). This clearly shows the two characteristics of a nearly unobserv-

able system; i.e., a system in which r2 is close to £1. The first is the

geometric relationship between r2 and £1 which is measured by ibi.

This quantity is unrelated to the eigenvalues and, in fact, can be altered

by scaling. The second characteristic is the time scale separation which

is measured by Id-a I. As is well known, this quantity is unrelated to the

spatial distribution of the eigenvectors and, in fact, is invariant to

scaling. Here enters the connection to singular perturbations.

To discuss weak observability, consider the system

(3.6.6)

y= [1 01 [ ]
II

where c is small. If c-0 then the eigenvalues and eigenvectors would be

X, a, r =

(3.6.7)

2 d, r2 =

I
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By continuity arguments, for small e we can consider (3.6.7) to be

approximations to the true quantities.

Clearly, the system is nearly unobservable for small c since

r2 is near I V Note, however, that if b is large then r is also near 1i.

It is in exactly this situation that a nearly unobservable system is

not weakly observable. This can easily be seen by computing the observability

gramian from (3.4.6). Using the fact that P cos e and P sin 8

we have

2' 2

-sine - sin2e

3 2d

_cos2e -cose (3.6.8)

k= 2X. - 2a

- ~(sine)
k ad (cos e sin 8 +
2 ad2

Using Theorem 3.3.2 we can estimate p as

p S (3.6.9)

Next, doing the computation in (3.4.4a), we have

2
b + ap-d- p (3.6.10)

l+p l+p 2

To review, we used the transformation in (3.6.4) to measure the

near unobservability of (3.3.6). The estimate cf p is given in (3.6.9) which

we assume is small because e is small and a-d is large. Because p(= tan 6) is

small, in sine -0 and cos3 -I. Then from (3.6.8) it follows that k3 is small

4 "mI "• a"
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small and k is large. This is one of the characteristics of weakly observ-

able systems. Next note that Sb-b from (3.6.10) and A --d because c is

small. Thus, kc in (3.6.8) will not be small if b is too large and so the

system will not be weakly observable. In this case, (3.6.7) shows that r 1 is

close to r. This is the geometric structure of systems which are nearly

unobservable but not weakly observable.
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CHAPTER 4

CLOSED LOOP GEOMETRY

4.1. Introduction

It is obvious from the GHR (2.2.8) that the open loop unobservable

subspaces C can be modified by state feedback [281. Indeed we shall base our

design procedures on appropriately modifying these subspaces. In thisI
chapter we shall investigate the role of the subspaces £ in a closed loop

setting. This involves two kinds of subspaces: (A,B)-invariant subspaces

L1 [ 3 ] associated with the state feedback law Section 4.2. and (C.A)-invariant

subspaces [221 associated with the observer, Section 4.3. Two applications

are included in Section 4.4.

It 4.2. (A,B)-Invariant Subspaces

4.2.1. Definitions

In this sqction we will study the geometry of discrete systems under

the action of a state feedback law, i.e.

x(k+l) - Ax(k) + Bu(k) (4.2.1a)

* y(k) - Cx(k) (4.2.1b)

u(k) - Lx(k) + v(k). (4.2.1c)

The reason for working with discrete systems is that we will obtain very

nice dynamical interpretations of certain subspaces which do not exist for

continuous systems. However, the results hold for continuous systems and

there is no loss of generality here.

With respect to the closed loop system (A-rBL,B,C), defined in

(4.2.1), we have
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X, Definition 4.2.1 [28]: The vector &EZ is an element of the 1-th L-
L

unobservable subspace, t, if x(O)- and v(O) -... - v(j-l)- 0 implies

y(O) -...- y(j-1) -0. By definition, £LEZ. o0

Note that Z L are defined with respect to a fixed L. For different feedback

laws we obtain different sets of subspaces, £C. Indeed, if L O we obtain

the unobservable subspaces of Section 3.3.2. The subspaces L clearly

* satisfy the same properties as in Corollary 3.2.3, 1)-4). Property 5) is

modified as follows:

LCorollary 4.2.2: XL is an (A,B)-invariant subspace in m[C].
L

Proof: From the proof of Corollary 3.2.3, it follows that £ is an (A+BL)-

invariant subspace which is exactly the definition of an (A,B)-invariant
LL L

subspace. Also, X C7I[C] since by Corollary 3.2.3, 2), £C.C='?Z[C ] (from

Definition 4.2.1). 0

4.2.2. Maximal L-unobservable subspaces

We can characterize the subspaces £L by describing the effect of

the control on the subspaces L.. More precisely, we will characterize the

effect of the control on the super-diagonal blocks Fjj+ I in the GHR,

* because these blocks govern the relationship between £j and £j+l" We will

first describe a set of L,s which we show below are in a certain sense

maximal. From properties of these subspaces we will derive other sets of

* £~'s.
.

The procedure starts by applying one step of chained aggregation

to (4.2.1). The result is

• 4

L ___~ -
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Sy+l) F 1+ G,S(k) +u(k), (4.2.2)i Lxx'-(k+l) • Aa A22 Ba t

y(k) - (Hi Ox(k).

We can identify the control affect on the information structure of (4.2.2)

by identifying &I[GI] and [G1 . To this end, there exists nonsingular

q matrices S and V such that

0 0

where G is a m xm nonsingular matrIx. We embed S in the nxn matrix

1 [Si (4.2.4)

and interpret it as a state space transformation

T, .(4.2.5)
Xr r

Similarly we think of V1 as an input space transformation

U = Vl]

where the partitioning in (4.2.6) is compatible with (4.2.3). Applying

(4.2.5) and (4.2.6) to (4.2.2) yields

o -,
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-1"(k+1) F 0
11.12 11

y(k+l) + 0 0 0] (4.2.7)
11 " 12 [ rk L 1 k

xr(k+l) .A21 A22 B31 B32J

9(ck)]
y(k) - [H1  0]Lx k)

We can further isolate the effect of the input on F12 by defining

I M 0 0'y l' y
1

_2 -2
0 1 .1 y (4.2.8)

W 0 1 n i
W1 rn-M L rJ L r.

Al1
W -B 31G

Applying this to (4.2.7) we have

yl~~k~l11 -l"F12 " 11 0

2 (k+l) F I " 12 [ ( 0 0 u1 (k) , (4.2.9)

F''(Rk l)0 Tr(k+l) 21 A 22 0 B32

y(k) [ [il : 01
Lr Z

Equation (4.2.9) shows explicitly how the control affects £ and

L
X2' First note that £1 7[C] (from Definition 4.2.1) for any L since the

* state feedback does not affect F12 which definesC 2" In particular, note

that we can choose L* such that
12

F + GC L* = 0 (4.2. 10)
12 11 12

0
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since G is nonsingular. Then define the feedback matrix

11 1

L* [ 11 (4.2.11)

L21  L22j

where the unstarred entries are arbitrary. Using (4.2.11) and (4.2.9) with

Definition 4.2.1, we have

ti sp

(4.2.12)

L* - -(

2 12

Because of the construction of (4.2.9), the subspaces in (4.2.12) are

maximal (with respect to inclusion) of the subspaces ZL i-1,2 for all

possible L's. Henceforth, we shall denote these maximal subspaces by L';
L* Ai.e. , X

If in (4.2.9) F 0, then £*-.C* and we are done. If F #, then
12 1 12

we repeat the algorithm above on (A22,B32,F12) to identify 2". This includes

one step of chained aggregation plus transformations (4.2.4), (4.2.6), and

(4.2.8). We shall call this algorithm Modified Chained Aggregation (MCA).

At each step the computations are embedded in appropriately defined state or

input transformations so that the algorithm produces equivalent system

representations. As described above, this algorithm was first presented in

[41]. See also [28.29,42].

It turns out that the subspaces £j are well known. Consider the

following definition.
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UDefinition 4.2.3 (4,20]: The vector EEZ is an element of the 1-th weakly

unobservable subspace, Vj if x(0) - E implies that there exists an input

sequence u(O) - --. - u(J-l) such that y(O) - "'" - y(j-l) - 0. By definition,

°0
vo~

Proposition 4.2.4 [281:

Proof: We will establish Proposition 4.2.4 for j-l,2. Induction will

complete the argument. From Definition 4.2.3 we have V 1 -7[C], hence the

result holds for J-l. Now suppose EE 2 .* Define the control

6 u(O) [ui(0) [L 2x r (4.2.13)
a1 (o)

where = R'(0) and L* satisfy (4.2.10). Then since 4e7?FI21, straight-r 12 12

forward computation in (4.2.9) yields y[0,1]=0. Therefore, £*C 2 . On the
2 2*

2other hand, suppose Ct. Then either y(0)#0 or 2 ()#0. If the latter
2

holds y(1) #0. In either case, Definition 4.2.3 fails no matter what control

is selected. It follows that C. This gives the result.
2 2

It has been shown [201 that T =n where 1* is the supremal (A,B)-n

invariant subspace in' ,[C] [ 3 1. (Indeed, this result can be proved using

the construction given above.) Thus Proposition 4.2.4 serves to connect the

subspaces £L to the well known subspace V*.
3

The subspaces f. have been used [20] to connect several well-

known algorithms [3,21,251 and so relates these algorithms to MCA. Of these

algorithms, [25] is closest to MCA in that it uses only input and state

space transformations. However, this algorithm was presented in a numerical,

not theoretical, context. Furthermore, all of these algorithms identify only

.C's. We shall use MCA to identify other sets of s
J J
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(4.2.3. Generic cases

When MCA terminates, the system (4.2.1a)-(4.2.1b) will always have

the representationr'<k'l " I ' r :G:][ 5(k) + [B G ° [E<"1E (k+l) B AG) 0 iBii(k)1
SXr (k+l) BGR xr  BRL(k) (4.2.14)

q y(k) , [H1  0]

with the properties that 1) 7Z[GI] 0 and 2) dZ[CR ]C61[Gl] (so there exists

state feedback to cancel CR). We shall frequently refer to this system

representation below.

Not every system displays all of the structure in (4.2.14). There

are three basic variations which can be illustrated nicely by considering the

generic results of MCA. To do this suppose that the first transformation of

MCA is selected as

1- [ C121 (4.2.15)

C - [C11  C12]

whera C is an rxr nonsingular matrix. Then it follows that

4 GI - CB (4.2.16)

where G1 is found in (4.2.2). Generically the product C3. an rxm matrix,

has full rank. There are three cases.

This is always possible by state permutation.

4
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'IN Case 1. m> r - more inputs than outputs.

Here .CB has full row rank and a nonzero nullspace. Hence, in

(4.2.14)

MEd(sp(]0 ) > 0. (4.2.17)

Furthermore, (F12 ] C [G1 1 ] so that all of F12 can be canceleA on the first

step. This implies 1 -X1 and MCA terminates here. Thus all of the structure

displayed in (4.2.14) exists and is nonzero. o

* Case 2. m-r - equal number of inputs and outputs.

In this case CB is a square nonsingular matrix. We have a similar

structure to Case 1 except that

d Sp [ O. (4.2.18)

MCA still terminates on the first step and £=£ Now in the system repre-

sentation (4.2.14), the submatrixBR does not exist. a

Case 3. r> m - more outputs than inputs.

* Now CB does not have full row rank. Condition (4.2.18) holds here,

but in (4.2.9) F12 is not canceled. Furthermore, all the control has been

used. Thus MCA continues as chained aggregation on the pair (A22,F1 2) (see

* (4.2.9) where B32 does not exist). Since this pair is generically observ-

able, we have, generically, X"=0. Cn

This analysis establishes the generic existence of £* (as is well known

[ 3]). This will also give us a criteria for generic solvability of certain

problems discussed below.
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4.2.4. Structural properties of MCA

We would like to describe how to generate other sets of L-

unobservable subspaces, but first we need to establish other properties of

the system representation produced by MCA. Let L* be any feedback matrix

which makes .* (A+BL*)-invariant. Let

sp (4.2.19)

Denote by R* the supremal reachability subspace in 7[C].

ProDosltLon 4.2.5 [28 1: 61* - (A+BL*B()

Proof: According to Wonham [ 3 , p. 113] d* is characterized as

*-*(A+BL*1*lniR[B]) . So we need to show U*n6[B] B . We proceed by

induction. If £1-, then *'-V*. In this case from the input transformation

V1 in (4.2.3) and (4.2.6), it follows that

.CB] = Bj. (4.2.20)

If i> 1 then we have that V identifies t*C " Since £*D.C*+i, we have

that X~rl6?[B] D On the other hand, if u4( then BuCC by MCA. So

L*nfi[B]CB. and the result follows. 0

MCA explicitly identifies a feedback matrix L* and the subspace

. Hence, it also identifies R*. Indeed, consider the first generic case

of (4.2.14). We have

* (ARIBR). (4.2.21)

In fact, this analysis further classifies the generic cases. For Case 1.

we have ?*=jL* since (4.2.21) is generically reachable. In Cases 2 and 3,

a* 0.
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In general, the pair (A RBR) in (4.2.14) will not be reachable.

We can give the eigenvalues of these unreachable modes a fundamental inter-

pretation using the following definition. Let A*= A+BL*Ic* and denote by

A* the map induced on Z'/R*.

Definition 4.2.6 (43]: The invariant zeros of (4.2.1a)-(4.2.1b) are the

eigenvalues of A*. a

Proposition 4.2.7 [28]: The invariant zeros of (4.2.14) are the unreachable

modes of the pair (AR,BR).

Proof: Because MCA generated the representation in (4.2.14), by Proposition

4.2.4

* sp (4.2.22)
xr

The feedback map L* is essentially determined by

C + BGL = 0 (4.2.23)

R G 2

(see (4.2.10)-(4.2.11)) which shows that A*-A R . By Proposition 4.2.5, Ct*

is the reachable space of (AR,BR). It is a well known [3 1 fact that the

* eigenvalues of the unreachable modes of a pair (A,B) are eigenvalues of the

induced map on the factor space Z(mod (AIB)). In this case the factor

space is £*/* and so Proposition 4.2.7 follows from Definition 4.2.6. o

* The invariant zeros provide the final classification of the

generic cases. Both Cases 1 and 3 will have no invariant zeros while Case 2

will have n-m invariant zeros.
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4.2.5. -CL subspaces

We are now in a position to describe other sets of L-unobservable
I.-

subspaces. It turns out to be most useful if we concentrate on possible

Lcandidates for L . We proceed by selecting a subspace %'CZ and then

computing a feedback matrix such that XL=n. We first note that KC L* since
n

* L
C* is the supremal L-unobservability subspace. In fact, £*£i for all i and

all L. Hence, the L*-unobservable subspaces £ represent an upper bound on

L
all possible sets of subspaces Li" Furthermore, we want X to be an (A,B)-

invariant subspace of the original system.

From Propositions 4.2.5 and 4.2.7, Z* can be decomposed as

£ *1 where £ is an A*-invariant subspace associated with thez z

invariant zeros. Since kCt* write X - 'ntz and Xr - X *" The possible
z z r

set of subspaces Yis then determined by possible sets of z and kr" We

will discuss each in turn.

Assume first that G*=0 in (4.2.14) (BR=O). Thus, the invariant

zeros are the set X(AR).

Now 7z=k must be (A,B)-invariant in ?'[CI. By inspection of
z

(4.2.14) it is not possible to alter the submatrix AR by state feedback. It

follows that Kz must be (AR)-invariant. Furthermore, if Kz is to be unobserv-

able, we must have ?[CR] JDz. But we can alter the submatrix CR arbitrarily

by state feedback (since R[CR]C R[BG]). So we have that z can be selected

to be any (AR)-invariant subspace.

Now consider X C6I* where the containment is proper. To simplify
r

the analysis, we will assume that £* 6?*, i.e., the system is represented

as in (4.2.14). it is easy to see that Kr must be an (AR,BR)-invariant
r R9 R

subspace. Furthermore, we want v, r to be a closed loop unobservable subspace.
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If we use feedback to replace CR by X1 9 this is equivalent to saying KCZ[Xl].

So we might as well choose X such thatY is the supremal (ABR)-invariant
1 r

subspace in [X1], i.e., £* for the subsystem (AR'BRXI). Now computing such

a feedback along with properties of the resulting subsystems was discussed at

some length above. All of those results carry over directly here.

q Finally, we note that the two cases discussed above can be combined
L

in a completely straightforward way to produce all sets of subsystems .

Only note that when d*A 0, the eigenvectors of A* associated with the

Linvariant zeros are functions of the feedback in R*. The possible sets of £

are then generated by first selecting X and then zr 1z

4.2.6. Direct feedthrough term

MCA can be applied to systems of the form

x(k+l) = Ax(k) + Bu(k)
(4.2.24)

y(k) = Cx(k) + Du(k). 
(

In fact, Definition 4.2.1 can be used directly to define the subspaces SL

where trie closed loop system is now (A+BL,B,C+DL,D) [20]. All the properties

oft go through.
F

To apply MCA to (4.2.24), we first find nonsingular matrices S and
0

V such that
0

S DV = (4.2.25)
o o 0 0

where D is a m Xm nonsingular matrix. We interpret S as an output space
1 0W00

transformation. Write
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s [ , BV [B1  B (4.2.26)0 C C21

where the partitioning is compatible with (4.2.26). Now we apply MCA to the

system (A,B2 C2).

Using Definition 4.2.1, we have that

, * = D[C2 1 2 [C]. (4.2.27)

If D- 0, then Z* = 77[C]. Thus, we see that, in general, the subspaces * are

larger when DO 0. However, the modifications to the theory are minor.

4.3. (C,A)-Invariant Subspaces

The second class of subspaces we will be interested in is (C,A)-

invariant subspaces. These subspaces will be useful in constructing dynamic

observers. These subspaces are the formal dual of (A,B)-invariant subspaces,

but we shall work with them directly. We start with a definition.

Definition 4.3.1 [22]: A subspace WCZ is (C,A)-invariant if A(,.'f7&C])Ca.

Proposition 4.3.2 [22]: a; is (C,A)-invariant if and only if there exists a K

such that (A+KC)dCvP. 0

Proposition 4.3.2 clearly shows the dual nature of (C,A)-invariant and (A,B)-

invariant subspaces.4
The GHR is a useful basis for identifying (C,A)-invariant subspaces.

Let (C.I)-(C.2) be represented after one step of chained aggregation as



52

r-E F12] 1+ [Bl U (4.3.1)

r 21 A22J r B2":

where H1 is nonsingular. First note that any subspace W of Rn with a basis

of the form

Amw sp (4.3.2)

II
where X is an arbitrary (n-r)xr matrix and is a (C,A)-invariant subspace.

When X- 0, this is immediate from Proposition 4.3.2, because H is nonsingular.

When X#0, introduce the state space transformation

- . (4.3.3)
Tr X xr

n- r

Substituting (4.3.3) into (4.3.1) we obtain

x+ [B B]u (4.3.4)

r A 21  A22+XF12j 5r B2+XB(

y-[ H1  0 ] .

Note that this transformation has preserved the information structure, i.e.,

the GHR structure. In this new basis, W is spanned by

a;- sp . (4.3.5)

I
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Again, applying Proposition 4.3.2 shows that &0 is (C,A)-invariant. In

fact, X parameterizes a class of (C,A)-invariant subspaces S *, an element

of which we denote by W'. It is also clear that any subspace of a'is alsox x
(C ,A)-invariant.

Now consider a subspace W' with a basis of the form
y

No d. -sp [ (4.3.6)

where Y is a (n-r)xr matrix. Now we have that ZY rl fl~c] uw&0 Applying

Definition 4.3.1 to (4.3.1) we have in matrix form

FfL ]~ =L : ht 11 F 12 [F12 an (4.37)

If a is to be (C,A)-invariant, we must have ta:1 n

2) F 12Y-0. These two conditions imply the P, is an unobservable subspace

of (4.3.1). If at satisfies 1) but not 2), then a, can be expanded intoy y
a (C,A)-invariant subspace. Define

[F 1

- Y=sp 12(4.3.8)

Then a, 0 W is a (C,A)-invariant space. This analysis enlarges the earlier
FY Y

defined class of (C,A)-invariant subspaces, S X. For each X in (4.3.2)

'S a* (4.3.9)

where Y satisfies (A22+XF19Y'C",is a (C,A)-invariant subspace. Note that

Y depends on X.
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It can be shown [22] that the intersection of two (C,A)-invariant

subspaces is again a (C,A)-invariant subspace. Thus any subspace of Z is

contained in a least (C,A)-invariant subspace. As an example, we

will identify the least (C,A)-invariant subspace containing S, which we

denote by X.

We shall see that r can be identified from the system representation

produced by MCA. We first illustrate the idea by considering generic Case 1

of Section 4.2. Then the system is represented as in (4.2.14), which we repeat

here

[ + 0(4.3.10)
r L21 A22 r B22

y *[H 0

The structure of the input matrix in (4.3.10) shows that 8 decomposes as0]
P= I [j sp (4.3.11)

.8 oil1 2*

* From the previous discussion it is immediately recognized that 3 is already
1q

an (C,A)-invariant subspace. Indeed, the transformation in (4.2.3) (which

is similar to (4.3.3)) makes this transparent. It remains to find a sub-

* space 1yDal such that 2 lJ =./ . Now Py must be (A2,)-invariant containing

32" But the smallest subspace with these properties is (A221B22) (=).
Thus we have for (4.3.10) = RI* . This generic case illustrates the

* following general result.
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Proposition 4.3.3 [44]: rnC *d?

Since we already know how to identify 6*, it remains to identify ;

off £ • The details of the general case are quite lengthy and can be found

in [42]. We shall briefly describe the construction for the following system.

Suppose that a system (C.l)-(C.2) aggregates after two cycles of MCA and has

the following representation:

y F " - " - 0 0
11. 2 3 11

y i 11: o o o l
*3
y F'. "0+ 0 0 0 (4.3.12)• .. I. . ... Y2 + -...... 0..... .. 2

Y2 F21 F22 F23 . 0 G2 2  C
o,. 9....... ...... ,. ..... ,.. . o.

C2 A *A ~A 0 0 B
r. .A31 32 33 - 33

y=(S 0 0" ] .

From our assumption and properties of MCA, it follows that G and G22 are

nonsingular matrices. We introduce the addition transformation

I 0 0 0 0 y y
_2 '_2

0 I 0 0 0 Y y

-3 -3
0 0 1 0 0 y -y (4.3.13)

o 0 0 1 0 2 2"
-2 -2
r W 0 0 1 J r J xr J

W -- A32
32e

This leaves B unaltered and replaces A by a zero matrix. Ncw it can be seen
32
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that 0! 0
s. y spy sp[Y2 j (A 33jB 33). (4.3.14)

The first term in (4.3.14) is a subspace of B as is the third term in

(4.3.14). This third term is in 7I[C] and so must satisfy the two conditions

discussed above. This generates the second term in (4.3.14). Of course, the

fourth term is 6*.

4.4. Examples

4.4.1. Pole-zero cancellation

As a short and interesting example which ties together many of the

preceding ideas, suppose that upon applying MCA to (C.1)-(C.2), we obtain

a representation of the second generic kind, i.e.,

r A 3  A 4  x r  0 (4.4.1)

0 y- (H 1  0]xl

7r

From Sections 4.3 and 4.4, the natural basis for X decomposes into two

subspaces

r-
*~~ p j [r2.r (4.4.2)

The first of which is the least (C,A)-invariant subspace containing 3 and

the second of which is the supremal (A,B)-invariant subspace in'[C].

Furthermore, '(A4 ) are the invariant zeros of (4.4.1).

-4z
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(Now assume that Theorems 3.3.2 and 3.3.3 can be applied to (4.4.1).

Then

1A I 1
|Pl|-< (4.4.3)

6 = sep(A,,A4 )

measures the near unobservability and

1A I
I 2 -I -:S(4.4.4)

4 measure the near uncontrollability. In either case, some of the eigenvalues

of A are given by

T '/2 T '/2A[(I+P P1) (A4 +A 3 P)(I+PP 1 )

(4.4.5)

A[ (I + PT (A4 +P 2 A2 )(I + PP 2) ]

Thus, if the system is either nearly unobservable (UP I is small) or nearly

uncontrollable (UP 21 is small), (4.4.5) shows that some of the eigenvalues

of A approximate the invariant zeros of (4.4.1). In fact, it would seem to

be the product

UA3P1U <A 3U II A2U

(4.4.6)

1A3 IIA2 11
lip 2A 211< 6I2A2 -<

which is important (cf. (4.4.5)). At any rate, this seems to be a state

space version of the well-known frequency domain phenomenon of approximate

pole-zero cancellation.

Iac.a n
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V4.4.2. Almost invariance

In order to show a connection between the material in this chapter

and the near unobservability concepts, we will briefly discuss Willem's

almost invariant subspaces (45]. In fact, the points of contact seem to be

so strong, that a complete exposition is not possible at this time.

In the interest of brevity, we simply list the necessary defini-

U tions and theorems from (45] where the reader is referred for details.

Let d(x,K) represent the distance from a point x to a set K , both in R7.

Let A. = A+BF where F is a matrix dependant on s.

Definition 4.4.1 [45]: A subspace a CZis said to be an almost invariant

subspace if Vx EV and e > 0, there exists x(t) such that x(0) - xO andoa a

d(x(t) ,V )< E Vt.
a-

A subspace G C X is said to be an almost controllability subspace if
a

VxXle da there exists T > 0 such that VE > 0 there exists x(t) with

the properties that x(O) = x0 , x(T) = x1 and d(x(t),a) _ , Vt. 0

Theorem 4.4.2 [45, Theorem 2]:

1) Vr = T' + R for some 4R if 'V is almost invariant.
a a a a

2) R is an almost controllability subspace if and only if there exists* a
n-ln  -0an F and a "hain {;i} such that R a -3+An2 + - F n

Theorem 4.4.3. [45, Theorem 8]:

Assume that 7 is almost invariant and that there exist subspaces V
*a P

such that" -*a where Ao Vc v

1) If F-., V is (A,B)-invariant and (A+BF) ?V C Vja
C a a a

4 2) If 'a is not (A,B)-invariant, then F,Ia

We shall discuss these notions for a system which is of generic

case 2, i.e. the system is represented as

I
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[ I 0] y +[lr 3r(4.4.7)

Sy [1 ol
xr

Now suppose we apply feedback

u L)Y+L2( x r  (4.4.8)

Then the closed loop system is

Xr A A3 A 4 1xr]

Now i in (4.49) is an almost invariant subspace by Theorem

4.4.3 (s). Simply take L (P) M 0 and define L (P) such that

1 1

L2 (P ) -) -A 2 as P- (4.4.10)

Of course, he approximating invariant subspaces,r are a subset of the

invariant subspaces of (4.4.9) .

A more interesting question is whether 6{ [B] an almost invariant

4 subspace. Yes, by Theorem 4.4.2 (2) and by Theorem 4.4.3 (2), F_ ® Now

suppose that we ta ke L 2 (p) =-- 0 (for simplicity) and let L I1 (P) . For

fixed r, is (B] near an invariant subspace? Yes, by Theorem 3.3.3!
4

By using Theorems 3.2.2-3.2.3 we have

11ph1 < -A3) (4.4.11)

where

5(p) sep(A1 + BIL ( ),A,) (4.4.12)

1 1 "1n
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Cand lPp I measures the distance between

sp (4.4.13)

and [B]. By suitably choosing the limit of LI(p), 6 (p) * - as p0 .

Hence, the closed loop invariant subspaces approximate R[B] but they require

high gain.

U We also note that in these coordinates

d(x (t), (B]) - Ix (t) 1 (4.4.14)
r

Then using the analysis of Section 3.4.2. from equation (3.4.14) we have

T im t  4mt

Ix (t), < 1 P 11(W)e + Uple Ox (O)Ir 1-2I y ( )  +P22 !  rx()

l4mt Almt) (4.4.15)+ UP2211 •'311• lyi(O)N (e -e

where

Pll P 21

LT pj(4.4.16)X r (O). P 12 P 22_

since Definition 4.4.1 requires that x(0)E-. In (4.4.15) Xlm -0 cc and PI2 -
12

* by (4.4.11). Hence, for any xI (O)EJ we can find p large enough such that .4

d~ ,) < E. Thus 3 sat sfied Def. 4.4.1 and so it is almost invariant.

The purpose of this rather superficial analysis is, first, to show

* that the trajectory definitions of almost invariant subspaces can be translated

into the topological characterization introduced in Section 3.3. Secondly,

the GHR framework allows us to identify, in particular, the structure of the

high gain feedback matrix which produces almost invariance. These two

observations suggest that the GHR may be useful for the analysis and design

of high gain systems.

0
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CHAPTER 5

SYSTEM DECOMSITION

5.1. Introduction

In the previous chapters we have discussed the geometric

structure of the linear system (C.1)-(C.2). The general approach has

been to study this structure in a specific basis. Relative to this

basis we were able to decompose the system into subsystems. See

Section 2.2.2. Until now we have not discussed the decomposition

aspect of this work. This chapter serves as a bridge between the

geometric theory above and the system theory below.

The decomposition of large scale system is of interest in its

It own right. Many results for large scale systems are stated in this

framework [46-48]. The description of a large scale system as

interconnected subsystems can occur in several ways. on the one hand,

the system model can be built up by joining together the subsystem in

some specified way. In this case the interconnection description is

straightforward. At the other extreme, composite systems are sometimes

r4 decomposed into an abstract description for analysis [46-5C] or compensator

design'[51] in this paper we shall discuss a decomposition procedure

which falls somewhere between these two extremes. It is not assumed

4 that the given system obviously decomposes into some interconnected

structure. Rather, the procedure exploits the basic underlying

Structural properties to obtain a suitable decomposition. The decomposi-

4 tion procedure described here is based on output or information structure

(observability), input structure (controllability), and/or their
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interaction. When considering only input structure, related results4

have been obtained by OzgUner and Perkins [52], Siljak and Vukcevic (511,

and Sezer and Siljak [531. of these, Ozgilner and Perkins is closest .
to the spirit of this paper. The other two decomposition methods

result in single input subsystems. We have no such restrictions here.

The decomposition procedure presented here should not be confused

with decomposition procedures which serve to rearrange a given inter-

connected subsystem description ( [50] or [54] , for example). The

purpose here is to identify subsystems appropriate for the intended

use of the model.

The method described here differs from existing methods in

r~c emphasizing input-output interaction. -We shall present this method

with two basic goals in mind. The first is model reduction. We will

show in a later chapter how several model reduction methods are

related to the open loop geometry and the system decomposition it

induces. Clearly, input-output interaction is useful here. The second

goal is compensator design. Since this interaction structure has proven

41 useful in feedback design [281 we are able to identify system

descriptions which are useful in closed loop design. This includes

both centralized and decentralized control. Chapter 7 is devoted to

4 these design ideas.

In Section 5.2 we will briefly summarize the previous chapters

to establish notation. This will set the stage for the model reduction

in Chapter 6 and the centralized compensator design. In Section 5.3
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we extend these ideas to systems to be decomposed into interconnected

subsystems. Section 5.4 applies these results to a two area inter-

connected power system.

5.2. Review

Consider the system (C.L)-(C.2). After i steps of chained

q aggregation, (C.1)-(C.2) is represented as

Y ] 0 y . (5.2.1b)

Lx

i
(See (2.2.8) where xr - xr.) Equation (5.2.1) suggests that we think

rr

of the composite system as two interconnected subsystems; the

aggregate subsystem given by

y AGy + CRxr + BG U (5.2.2)

and the residual subsystem

Xr ARXr +BGRy + BR u (5.2.3)

(see (2.2.9)-(2.2.10)). By Proposition 3.2.4 we have that
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£i = sp (5.2.4)
X

K
In view of (5.2.4), we can think of Zi as the "state space" of the

residual subsystem (5.2.3). Further, CR represents the information

u coupling between these two subsystems. Considering it as the output

matrix of the residual, we say the system (C.1)-(C.2) has been

decomposed into interconnected subsystems (5.2.2)-(5.2.3) based on

the information structure of the system.

By dualizing the above results we immediately obtain an

input structure decomposition. Indeed, any results stated below for

the output structure have a dual interpretation in terms of the input

structure. However, it is probably more useful, because of the

potential closed loop applications, to investigate how the input

structure overlaps the output structure.

Modified Chained Aggregation (MCA), described in Section 3.4.2,

provides a system representation which identifies the overlap of the

* input and output structure. MCA will produce a system representation

of the form

FA G CRBG 0

LB(5 noa]iLl si [Bc BR [ ] (5.2.5)

y (H 01

The submatrices in (5.2.1) and (5.2.5) are not the same. We
have relabeled (5.2.5) for notational simplicity.
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where

s' r (5.2.6)
x

for some feedback matrix L (L is identified by MCA). Similar to (5.2.1),

we identify and aggregate and residual subsystem in (5.2.5).

Geometrically, (5.2.5) displays a decomposition of B R R[B] as

(,Lq L) _L L (5.2.7)

. where

s L =aro "7
"1 u ] (5.2.8)

Note that L is unique and is identified explicitly by MCA. This

decomposition splits the control into two subvectors. The first

subvector, u, influences the dynamics of the aggregate subsystem and

the information coupling between the two subsystems. The second control

vector, U, influences the dynamics of the residual and the affect of the

aggregate on the residual. Since S describes how the controls directly

affect the state of the system, we have achieved the desired input

decomposition.

Chapters 2-4 have been devoted to the study of the properties

of the representations in (5.2.1) and (5.2.5). Knowing these basic

properties, these decompositions should be useful in a variety of

contexts. We shall discuss in detail their relationship to two major

Ii
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topics. The first is model reduction. Here the aggregate subsystem is

selected to be a reduced order model of the original system by ignoring

the coupling term C r xr' of course, certain errors are made. An

aposteriori error analysis then shows how the nonuniqueness of the

transformations can be used to minimize these errors.

The second topic we shall discuss with respect to these

decompositions is compensator design. In particular, we shall introduce

a control design procedure called Three Control Component Design, which

is based directly on (5.2.5). We shall also see that (5.2.1) is useful

for observer design and so we will also discuss dynamic compensators.

5.3. Interconnected System Decomposition

in this section we investigate the role of the input-output

structure in decomposing composite systems into interconnected

subsystems. These decompositions result when the submatrices in (5.2.1)

and (5.2.5) take on a special form. The approach here is to use

chained aggregation and MCA to identify the inherent information and

0 control structure of the composite system. Having isolated this

structure it is then possible to recognize how these structures

decompose. This leads to various decompositions of the composite system.

* This approach is somewhat ad hoc and can be expected to be most

useful when there is some underlying physical structure. However, it

does exhibit great flexibility. The number of decompositions possible

0 is too large to give a complete listing. Therefore, we shall present

a number of examples to illustrate the approach.
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The first three examples illustrate decomposition based on

information structure alone. Then we turn to input-output decompositions.

Example 5.3.1. Suppose that (5.2.1) represents (C.l)-(C.2) after one

step of chained aggregation and H1 - I. Furthermore, suppose that y in
1 2(5.2.1b) is composed of two subvectors y and y . These could represent

the outputs of two separate "channels", for example. With this finer

structure we can further decompose (5.2.1) as

1 A A 'Cy 1BlGi G12 ' R

., A A C' B u
G21 G2 a R2 G2

-------- - ..--- 

BGR1 B G A R x U BR

(5.3.1)

1 0 0, I

2 2, 0 .y

L xrA
That is to say, the assumption of two separate outputs has yielded a

further partitioning of the aggregate subsystem. Suppose also that

A 0 and AG2l 0. This is not merely a result of the computational
4G12G2

procedure but must result from the structure of the system. In this

case (5.3.1) takes on a hierarchical structure of two subsystems being

driven by a common third subsystem (the residual), i.e.



68

94 Ayx + BGu+e CX i-,2

(5.3.2)

See Figure 1.

Example 5.3.2. As a second example suppose that in (5.2.1) AR turns

out to be block diagonal. Then (5.2.1) becomes

*AG SC CR y BG
------ -- J------------- ---

.].xr  B GR A R1 0 x + BR1 U,

.22x B 0 AR2 Bri GR2 L. r-j R2J

(5.3.3)

y

Y (1 0 0 x 1

2 3

Here we see that the residual subsystem decouples into two subsystems

L. which then drive the aggregate, i.e.

2
rd = AGy + By u+ E C x£

G iml Ri r

(5.3.4)

r A Ri xr + BRiY

See Figure 2.
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Ist Aggregate Y

S[bsysysmem
2n grgt

Figure 2. Example 5.3. Agredate decomposition.

Is esda

Iu
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(1 Example 5.3.3. Continuing with Example 5.3.2, suppose we have the

structure described there and, in addition, the matrix

V[CR1 CpR21  (5.3.5)

is block diagonal.

This structural property induces a further decomposition in

the aggregate subsystem; i.e. (5.3.3) becomes

r.l- A0A av 'l BGC AG A G12 CR1 0

1.1 A 0 C 2G21 G2 R2 G2
_-G2,---------- + -- B

S BG A 0 x B
rGRl GR.2i RI r RI

2 U 2

Lr GR2 BGR2 _R2 R2

(5.3.6)

I 1 0 , 0 0 y "

2 2y0 I , 0 0 y"

• ~xl
r

2
x

* With this additional structure, (5.3.6) can be interreted as two subsystems

interconnected through their outputs, i.e.
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S: -[ Gi CRi iFBGi AGi,3-j y

BB~ Ai r BRi .Bo Ri,A3j

i-1,2 . (5.3.7)

See Figure 3.

q Equations (5.3.6) and (5.3.7) very nicely illustrate the close

relationship between the information structure in (5.3.6) (as derived

from (5.2.4) and the physical structure in (5.3.7). By changing our

4 point of view we obtain different decompositions.

Also note the difference in the decomposition procedure between

Examples 5.3.1 and 5.3.3. In Example 5.3.1 a partitioning of the output

was assumed and then this was used to induce a decomposition in state

space. In Example 5.3.1 exactly the reverse occurred. Here, the

decomposition in state space lead to a partitioning of the output vector. a

Thus far we have considered some decompositions based only on

the information structure. Clearly, by dualizing the results we obtain

decompositions based on the input structure. However, as noted above,

it is of more interest, because of the potential for closed loop

applications, to obtain decompositions based on both the input and

output structure. We will consider several such decompositions next.

Example 5.3.4. In this example we consider a refinement of the structure

of Example 5.3.3. In addition to assuming AR and CR are block diagonal

in (5.3.6) suppose that BGR, BG and BR are also block diagonal.

Furthermore, let
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u Subsystem 1 Yl

y U Y2" !Subsystem 
2

FP-7545

Figure 3. Fxample 5.3.3 -Ouput interconnection.

0i
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AGi,3-i" BGibil

(5.3.8)

GRi,3-i BRLNi2

Then (5.2.5) takes on the form of two systems connected in a feedback

configuration, i.e.

A;I:i L:Gi A 
ji (= i R + Giv (5.3.9a)

LJ LB GRi  A Ri L Bi

L

N

v = y- + u (5.3.9b)LN~
See Figure 4. (Compare with (5.3.7).)

Computationally, the existence of this representation depends

on the block diagonalization of BC and BR (along with previous assumptions)

and the existence of Nil and N12 in (5.3.8). Since we have allowed input

transformations, there is some flexibility to meet these conditions. r-
4

Examole 5.3.5. In this example we will generalize the structure of

Example 5.3.4 to include representations where the interconnections

(5.3.9b) are dynamic. To illustrate the basic idea, we consider the

composite case first. Suppose we have obtained the representation in

(5.2.5) and B 0. If we assume that B is square and nonsingular we
R G

4 can write
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1UN

CY2 Sbytm2U

Figure 4. Example 5.3.4 -Input-output interconnection.

-0
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C C BGN

(5.3.10)

BGla LC

for some matrices N and L. Then (5.2.5) becomes

L rI : ::R [r] 531

which we recognize as the aggregate subsystem with dynamic output

feedback compensation.

Now suppose that in (5.3.11) AR, BG and N are block diagonal,

i.e.

.1 BGIN 0 y1 B F 0

2 AG-2 [ G2l
A2 0 B 0 Bu

G21 G2 BG2N2  BG2

xr  1 A2 0RI xr 0 G

L I LL21 L 22 0 AR2J x L 0 0

(5.3.12)

21-2

y0 1 0 0 y2

r

L i"r
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Here the aggregate decomposes into two subsystems,

i A £~ i

L +BG± v i-1,2 (5.3.13)

where tha interconnections vi are now dynamic. They are given by

-i M -i =2iY

r =i Lr ii i

i-l,2 (5.3.14)

vi - A 3-i
v Nixr + Gi,3-iy

See Figure 5.

One case of particular interest occurs when L and L are

both zero in (5.3.12). This uncouples the interconnection equations

in (5.3.14) and results in a simplification of the interconnection

structure. See Figure 4 where the Ni are now thought to represent

dynamic connections. This represents a particular case of the

interconnected structure used in [50].

We have given here by no means an exhaustive list of possible

structures. The similarity between the structures in Examples 5.3.2

and 5.3.5 indicates the variety of interpretations possible. This

flexibility should allow the representation to match its intended use.

The structural decompositions discussed above occur frequently

in the large scale system literature. For example, certain conditions

have been given for dynamic decentralized stablization. These conditions

have been specialized for the structures discussed in Example 5.3.4 [46]

and Example 5.3.5 [49]. A particular control strategy has been proposed
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Ul + Subsystem 2 Y

Interconnection -

Figure 5. Example 5.3.5 - Dynamic interconnection..
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for systems exhibiting the structure of Example 5.3.2 (281 . Recently,

a decomposition in the spirit above was used in a dynamic game context (55].

The dual decompositions of Example 5.3.3 have been used in stability

analysis [48].

5.4. Two Area Power-System

In this section we apply the ideas of the last section to

decompose a two area power system. This example Illustrates the close

connection between the physical structure and the information structure

and how this interrelationship can be used to obtain different

decompositions.

We will consider a two area power system in which each area

contains two thermal power plants. The outputs are the frequency

deviation in each area and the tie line power flow. A description of

the system model and parameters is given in the Appendix. Physically

we would expect the model to decompose into two interconnected sub-

systems but the decomposition is not immediate because the tie line does

* not fit conveniently into either area. As suggested in Section 5.3 we

apply one step of chained aggregation to obtain

a99 hj. 0 C 0 Fxl e9 0 Fw 1

y h2  0 h y + 0 0 X 0
0 1 2 3 2L 0 h3  a99  0 C2  0 e

(5.4.1)
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where y - yl Y2 Y3

A 0 2 D 0 YFD B 0 lu-

.i A L o j L L B2 2 (5.4.2)

and where

a 0 0 0all

a21  a22  0 0 0

0 i aa 0
23 33

± £
A£ 0 0 a3 4  a4

-- - -- - 3 4 4 4- --- -- . . . . . . . . . . . . -, , 2 7 j
~a55 0 0 0

:. ia 0 0 0
0 65 a66 0 0

a a 0
67 77

£ i £ i £ i £

0 0 a 78 a 88

[0 a92  a a 9 0 a96  a9 7  a98J (5.4.3)

bll 0 a1 9

0 0 0
0~ Ia

0 0 0

0o5 a 59

0 0 0
a -i

0 0 !0

0 0 0
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CThis is exactly the structure of Example 5.3.2. Note that (5.4.1) does

not further reduce to the aggregate structure of Example 5.3.3. This

is the reason we were not able to identify two subsystems in the original

model. .We can, however, obtain a hierarchical structure for (5.4.1) by

permuting the states y1 and y

0 h21  h23 0 0
Y2 2 3 Y

h a 0 Yl + C 0 x + C910 E ]
* l12 991r- 9 2

h3 h32 0 a9 2 Y3 0 C2  0 C 92 .
32- 99 T3 92

(5.4.4)

This shows that we can associate the states y1 and Y3 with their residual

subsystems, respectively. This is perhaps a more physically meaningful

decompositi:T in that each residual subsystem now represents exactly each

area while the aggregate subsystem is exactly the tie line. However, it

may not be as useful for control design since the control does not appear

in the aggregate.
0i

Returning again to the decomposition in (5.4.1)-(5.4.3), write

A- diag (AlA Bt diag (B 1 ,B 22

* (5.4.5)

D D

02
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Noting that

D B B j-1,2 (5.4.6)
j Ji.

we see that each subsystem decomposes into two subsystems (representing

each plant) as

.A i Ki i i Cyi i i
jj A jj r + BjjNjy + Bjjuj

(5.4.7)

J-1,2 o ,"I, of2-3.

This is similar, but dual, to the structure in Example 5.3.2.

As mentioned above these decompositions may not be useful

since the control variables do not appear in the equations for the

output variables (which we want to control). To obtain a different

decomposition, we continue to apply chained aggregation to

(5.4.1)-(5.4.3) until the control appears in the aggregate. Since

the residuals are decoupled we can apply chained aggregation to each

subsystem separately. In this case two stages of chained aggregation

are needed. The result is

4•

6
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f 1 0 0 0 0 0 0 0 0

-f22 23 2 25 26 27 28 g21  g22

f = 33 f 34 0 0 0 0 X+ 0 .
0 f44 0 0 0 0 0

0 0 f 55 f 56 0 0 0 00 0 0 f66 f67 0 0_ I

('0 0 fi 0 fi 0 f 0 0

0 0 0 0  0 0 0 3

0 88  0 95 2 _

(5.4.8)

01

Ile- d4

0
+ 41 y c£

0

*o
d81]

tyi
Sy =[1 0 0 0 0 00 0]x I  i=1,2

where 1 , c= 3. The aggregate system parameters are given in

the Appendix.
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From (5.4.8), we see each subsystem has one output and two

inputs. To isolate the residual control, we apply an input trans-

formation as in (5.2.9):

i|j
ti mv Lui-L 22 g21jL~ (5.4.9)

so that the input matrix in (5.4.8) becomes

0 0

~2l

g 0
i ii i

g4 1  842 4 2
0 0 '42 " (5.4.10)

921

0 0

0 0 i=1,2

0 952

We now decompose the subsystems as indicated by dashed lines in (5.4.9)

and group it with (5.4.1) to obtain the decomposition:
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a9 9 h12 0 1 0 0 0

o o
h2  0 h2 0 0

2 0 00 h a i o
1 3

2 00 h3 2  99 0 1 0

2 2

1 0 0 y +

0 0 f 0 0

2 1120 0 0 0 0 0 +(2

2 0 - 0 0"

0 0 0 0
221 0 22

0 0 0 0

2 11

0 0 0_ 0 0

0 0 0 0 0 0 '0 0 0 0 o

0 0 0 0 0 0 00 0 0

117

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 r

023 024 25 026 027 028 0 :2

0 0 0 0 0 0 0 0 0 0 0 0

24 2 2 2 28_
f2I2 2 2 2 2.
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_ _-0 - 0 0 0x3 f33 f34

i 0 0 0 0 0 o 1
x4  0 0g4 g42

r .i 0 0 0 f f 0 0 0 L £

6 66 f67 L

k 0 0

_ s_0 0 0 0 0 f 88 _ 0g62

(5. 4. 1 1b)

0

d8

I 41

+ 0 y 1~ =1,2.

ds

sussesa ecieInEape532 sopsdt h ale

closed loop design. This decomposition also illustrates how the ideas

in Section 5.3 extend directly when more than one step of chained

4 aggregation is used.
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CHAPTER 6

MODEL REDUCTION

6.1. Introduction

Chained aggregation and the GER was originally introduced as a

model reduction technique (2]. Indeed, it is an extension of Aoki's concept

of aggregation [ 8]. Since Aoki's original work, much insight has been gained

into aggregation [1,56-62]. in this chapter, we will show how many of these

ideas can be unified and extended using the GHR framework.

The purpose of this chapter is not an indepth review and discussion

of model reduction techniques, but to point out where the GER and its geometry

come into play in reduced order modeling. The most important aspect of this

chapter is not the details of any specific reduction procedure, but a general

understanding of how the geometric structure of (A,B,C) relates to system

theoretic ideas. If the final goal is compensator design, one can question

the wisdom of open loop model reduction. Therefore, the true benefits of

this chapter will be realized when these ideas are combined with compensator

structures discussed in the next chapter.

In Section 6.2 we will discuss Aoki's aggregation concepts [ 8],

the birthplace of the GHR. This will include its abstract form as a projec-

tion method. Section 6.3 applies these ideas to modal methods for reduction.

Two different error analysis methods are presented. Section 6.4 discusses

model reduction by using properties of the controllability and/or observ-

ability gramian. Section 6.5 relates the GHR to the cost decomposition work

of Skelton[1]

Throughout this chapter we shall assume that the system (C.l)-(C.2)

is asymptotically stable and observable. These assumptions are not always
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required, particularly in Sections 6.2 and 6.3, but this allows for a unified

treatment. The appropriate generalizations can be easily made by the reader.

6.2. Aggregation

6.2.1 Prolection

We first consider Aoki's algebraic concept of perfect aggregation.

Thus, we interpret the output equation (C.2) as defining the variables to be

approximated, i.e., C is the "aggregation matrix" [ 8]. According to Aoki [81

the system aggregates if there exists a matrix F such that

CA- FC. (6.2.1)

In this case, the reduced order model is

z " Fz + Gu
(6.2.2)

G -CB.

To see how this relates to the GUR, consider (C.1)-(C.2) after

one step of chained aggregation, i.e.,

Flt F ir2 + 1G,
ir A21 A22 r B2  (6.2.3)

4

y = c I  0]
1x r

In the basis (6.2.3) it is easy to compute (6.2.1). We have

CA - C1 [F 1 1  F1 2 ] = F[C 1 0] - FC. (6.2.4)

Assuming C1 is nonsingular (C has full row rank), F exists exactly when

F 120, in which case

k' , " - ]|11i ' .. .|12 i
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F - C F C. (6.2.5)

Also note that

CB G C G 1 (6.2.6)!1 1

Thus, G contains all the information of CB. From (6.2.5)-(6.2.6) the

reduced order model (6.2.2) is constructed.

The geometric interpretation of the GHR gives us immediately a

geometric interpretation of aggregation. From Theorem 3.2.4

X X n sp (6.2.7)
1

is the unobservable subspace of (6.2.3). Hence, systems that aggregate in

Aoki's sense exhibit this very strong form of unobservability.

Aggregation has also been interpreted as a projection method[57-59]. "

This also has an easy interpretation in the basis of (6.2.3). Assume that 7-

C1 -I (or change basis in the state space). Then the projection matrix P is

P -•(6.2.8S)
[0 0]

A projection matrix is characterized by 1) the subspace being projected

along and 2) the subspace being projected on. Here the subspace being

4 projected along is

77 [C] - sp [ (6.2.9)

Turm

This subspace is unique and determined by C. The subspace being projected
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on is

sp . (6.2.10)

Note that F1 - 0 implies the rows of C (the aggregation matrix)

span a left eigenspace of A. Since a[CT]17Z[C], the reduced order model is

* determined by n[C] [62]. This fact is often used in constructing an aggre-

*gation matrix [57-60].

6.2.2. Coherency

As an application of these ideas we mention some recent work in

coherency of power systems. While coherency has been a standard topic in power

systems, we shall follow the recent new approach of Kokotovic, et al [63,64]

where the reader is referred for details. The system model is given by

. = Ax, x(O), t_ 0. (6.2.11)

. If (6.2.11) represents a disturbed system, then the disturbances are

modeled in the initial condition. States xi and x of system (6.2.11) are

coherent with respect to n-r modes of A, a a if and only if none of these

modes is observable from

y (t) xj (t)- xi(t). (6.2.12)

Now suppose we have chosen n-r modes a and that there exists r!I a

distinct groups of coherent states, i.e., groups of states coherent to each

other. In each group pick a reference state and let these be the last r

states in (6.2.11). Now define an (n-r)xn output matrix C for (6.2.11) byI

C = [In r-Lg . (6.2.13)

The matrix L contains the grouping information. The (i.j)th element of L
g g

- • I . . .. . . . . . . " "1 " ' ". . .. . | - '
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is 1 if state xi is in the J-th group, il,...,n-r and J-n-r+l,...,n.

Note that each row of (6.2.13) defines an output as in (6.2.12). Next

define a similarity transformation

r 9(6.2.14)

Lx I+ r  0 n-r "2

in which case (6.2.11) becomes

[A- (6.2.15)
xr A21 A a  x r

where R[L ] is a Riccati equation in L . Using this setup, it is shown
g 9

. that the outputs defined by (6.2.13) are coherent with respect to the modes*

aaf and only if R[L] = 0. In this case a a (A a

This whole framework fits directly into the discussion above. We

note that the transformation in (6.2.14) transforms (6.2.13) into

[1 0. (6.2.16)

Hence, this is the first step of chained aggregation. Then (6.2.15) aggre-

gates if and only if R(L ] -0 and the unobservable modes are X(A a). In

other words, £1 for (6.2.15) is the unobservable subspace. This shows that

coherency is intimately related to the information structure of the system.0
Coherency is a topic closely related to physical systems which do

not satisfy the strict algebraic requirements above. Therefore, a common

approach is to define near-coherency. This can be formalized in the frame-

work above by requiring in a nearly coherent system that the contribution

of modes a to the output (6.2.12) be small (641. This idea can be madea
* precise by introducing near unobservability of Section 3.3. If a system is
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coherent when £ is unobservable, then it is nearly coherent if £ is nearly

unobservable. In fact, the contribution of the modes o to the output
a

trajectory has been bounded in (3.4.15). There we see that coherency is
strongest when there is a separation between A(A a) and (Ad) in (6.2.15), a

fact which has already been noted [64]. We also note that the Riccati approach

*to coherency is very similar to the approach to near unobservability in

Section 3.3.

An approach to near coherency very similar to the one here has been

proposed in [12] under a slightly different formulation. Those results can

*be recovered by using the subspace measure proposed in Section 3.3.

6.3. Modal Methods

6.3.1. Preliminaries

There is a number of model reduction methods [7,9,65], based

essentially on the open loop modes, that fit nicely into the aggregation

framework. Suppose that the system (C.1)-(C.2) is represented as

u (6.3.1a)
A 3  A 4  x B

y- [I (6.3.1b)0 x
r

We wish to construct a reduced order model for the output variables y from

some set of r modes of (6.3.1). This model will be identified by selecting,

sequentially, two state space transformations. The first transformation is
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the orthogonal transformation, to preserve as much structural information

as possible, introduced in equation (3.3.7),

[p

1 1 • (6.3.2)

LP21 P221(xrl

Here P is chosen such that the transformed system is given by

: -[ 1u (6.3.3)
xr F F xr

y-[P1 1  P12] rl

The second stage is the selection of a second transformation

r .(6.3.4)

Then (6.3.3) is transformed into

C L[ 11 F (6.3.5a)

Y [1P1-P12x  P12 [xl (6.3.5b)

F21 ' F 21+XF - F 22X, G 2 G2 +XG (6.3.5c)

21 2 1 2 X

• "S• a N i
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From this representation we obtain the reduced order model

y- Fl 1 j + G u

(6.3.6)

Yr [Pll-P12X1.

The error is calculated from

e(t) - Y(t)-yr (t) [ 0.

" 2] (6.3.7)

" P2£ (t).
12 r

From (6.3.5) xt(t) is given explicitly from

F22 r(O2 t F22 (t-T) t F22 (t-r)
xri ) r() + f e G2 (X)u(r)dT + e • F21 (X)y(r)dT

0 0
(6.3.8a)

Fl1T T F11(T-s) "
j(r) e j(0) + f e Glu(s)ds. (6.3.8b)

0

So these methods proceed as follows. First (6.3.2) is selected.

Comparing (6.3.6) to (6.3.3), we see that this is the same as selecting the

eigenvalues of the reduced order model to be a subset of the open loop eigen-

values of (6.3.1). In forming the reduced order model (6.3.6), an error is

made (6.3.7). By specifying a cost function on e(t), we can select a second

transformation (6.3.4) to reduce this error. On the other hand, X may be

selected to satisfy some other criteria (F21 (X)- 0 or G2 EX)- 0) and then an

a posteriori error analysis performed.

This method is clearly a projection method. The subspace to be

projected along is determined by the transformation (6.3.2) (the span of the
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last (n-r) columns). The subspace to be projected on is determined by the

second transformation (6.3.4) (the span of the first r columns).

6.3.2. Dominant modes

This method of model reduced proceeds by first reducing A in

(6.3.1) to a diagonal form. In our framework this means selecting X such that

F21 (X) - 0. Then to produce the correct steady state'error, the neglected

state variables are approximated by

Xr 0 - F22ir + 2U

(6.3.9)

x-- Gu(t).
r 222

In this case the error equation (6.3.7) is modified as

e(t) = P12 (i ()+ F2 1G22 u(t)). (6.3.10)

If we assume as zero initial state and a constant input of magnitude uo, then

we can estimate the error using the analysis in 166]. Note that F = 0
12

eliminates x dependence on y and simplifies the analysis. Let T be the
r2

(n-r)x(n-r) matrix of elgenvectors for F22 and A 2 the corresponding modal

matrix.

le(t)I :s IP 211if t G2(X)u dt + F22G2UoI
0o

* -t A2 (t-'T)

S IP IK(T2)I6 I-|u |.|Afe d + '
12 2 0 2

_ IP2 I(T2)G -Ui Ae
12 22 .%u 2

< o (6.3.11)

mini Xi(A2)

a
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In this bound we identify three terms. The first is

K(T2 )l (T2) * "(6.3.12)
min A (A2 )

This term bounds the dynamic response of the neglected residual subsystem.

Note that this term tends to zero as the dynamics become arbitrarily fast.

This indicates that the fast modes should be neglected.

The second term is I P1 2 1. This measures the contribution of the

residual subsystem to the output. Clearly, we want this to be small. Taken

in combination with the first term, we see that we would like the system

(6.3.1) to be nearly unobservable (see Section 3.3).

The third term is IG I1u 1. This measures the excitation of the
2 o

* residual system by the input, again a term we would like to be small. It is

not hard to see that in (6.3.6) if F 20 and U is small, then the dominant
12 2

S invariant subspace approximates B . This gives a guideline for selecting the

dominant invariant subspace to be retained.

Bounds similar to (6.3.11) were given in a -series of notes [66-68].

However, they ignored the geometric structure of the problem in favor of

'4 emphasizing the dependence on time scale.

6.3.3. Mitra's method

Mitra's method [9] is a systematic way of choosing X in the second

transformation (6.3.4) to minimize the integral squared error (6.3.7). The

first step is exactly the same as in dominant mode selection. The first

transformation (6.3.2) is chosen to yield (6.3.3) though the eigenvalues to

be retained are not yet specified. Now introduce the cost function

min E(X) f Ie(t)I2dt. (6.3.13)
x 0
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So the second step of the method is to choose the second transformation

(6.3.4) to minimize (6.3.13). Bear in mind that (6.3.13) is parameterized

on the first transformaion (6.3.2).

Next note that

2 +TT . TT
Ie(t)I rl X -trace £1P

r 12 12r 12 r r12

T -T T [o TM trace P 12[0 I] [ T Xr] p (6.3.14)12 xr I 12"

Then

/Tle(t)| 2dt - trace P12[O to t [IJ f Tdt P 12

0 0 1.

- trace PI2[O I] T 1 T ]Tdt p 2-

trace0 0r 0 1 ]
=trace PI2[O I] 10 Q2T  Q32 01"

12 TJL J12
LX I jQ~ Q3  0 o

trace PI2 [XQXT+Q XT + X Q 3 ]P 2  (6.3.15)

where

Q M (6.3.16)Q2 Q3J

is the well-known controllability gramian computed for the system (6.3.3).

However, this gramian has the same properties as the controllability gramian

for (6.3.1) because (6.3.3) was obtained from (6.3.1) by an orthogonal

transformation.

4 I- I " "I- i
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Since (6.3.15) is always greater than zero, we can minimize the

integral of the error by minimizing the quantity in hrackets in the last

* term. Thus

[trace XQ1X T+Q2 XT+XQ2 +Q3) ( 7X 1 2 2 3 (6.3.17)*

-2Q 1 XT+ 2Q2 -0

or

xT - -Q (6.3.18)

The optimal value of the cost function (6.3.15) is

R 2dt trace PTIQ3-Q2Q1 Q2]P (6.3.19)

0

* Thus for each P, i.e., each invariant subspace, (6.3.19) gives the associated

cost. The straightforward application is then to look at all r-dimensional

* invariant subspaces and choose the one with least cost (9,60].

The above analysis provides more insight, however. First, Q is

"" calculated from

F 0 l QT ETL 1 ] Q 2 + =l L2 1 - "l [GT G2T (6.3.20)F FT G2 1
L21 F221 [Q2 3 Q2 Q3 0 F 2 2

This decomposes as

T GGT (6.3.21a)

T = (I 2 + T
F Q + Q2 F2 2 = (GG+Q F2 1). (6.3.21b)

- trace XQ Q.

L . --, • i i I .. . I - I i - I I[ -x
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To compute X in (6.3.4) first solve (6.3.21a) followed by (6.3.21b). Thus,

the full order Lyapunov equation need not be solved. The savings in compu-

tation may be great if the order'of the reduction is large.

Secondly, substituting X in (6.3.18) into (6.3.15). we obtain the

controllability gramian of the optimal representation to be[00 0]
[Q1  QTQ-1Q} "(6.3.22)

Q3-Q2Q1 Q21+-

This is reminiscent of Moore's balancing technique [10]. Indeed, the control-

lability gramian for the reduced order model is the same as that subsystem

embedded in the original representation (see (6.3.21a)). For further

discussion see Section 6.4.

Finally, consider (6.3.8) (cf. (6.3.7)) which essentially describes

the error. The error is generated by two inputs: 1) u(T) directly into the

residual subsystem through G2, and 2) u(T) filtered through the aggregate

subsystem, i.e., y(T), through F Both G and F are functions of X.
21' 2 21

So we interpret the calculation of X as trading off the effect of the input

and the effect of the aggregate on the error.

The error analysis of Mitra's method yields results similar to the

dominant mode method. Again we would like the system to be nearly unobserv-

able, i.e., HP small and the eigenvalues of F22 fast. We would also like

to have F12 and G2 small together. This has the effect of diagonalizing Q in

(6.3.16) (cf., the analysis of weak observability). Then the separation of

the eigenvalues will ensure a small cost (6.3.19).
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6.3.4. Summary

We can combine the observations to identify characteristics of

subspaces used to produce a reduced order model. For clarity, suppose the

invariant structure decomposes as

x -VO d  (6.3.23)
r d

where V is the invariant subspace of retained modes while V is its
r d

complementary invariant subspace of discarded modes. Then

(1) Vd should be near 7[C]. This implies IF1 2 I is small.

(2) Vd should be nearly orthogonal to Vr . This implies IF2I is small.
r ~211

(3) 'r should be near 61[B). This implies IG I is small.
r 2

(4) Vr should contain the slow modes and Vd the fast modes. Thisr

implies the effect of the aggregate and input on the residual will

be small.

We shall see that (4) is structurally related to (2); i.e., systems with

separated eigenvalues tend to have property (2). Also (2) and (3) combined

with (4) implies that the controllability gramian tends to be diagonal with

separated singular values. Similarly, (1) and (2) combined with (4) leads

to weak observability. The combination of these two concepts will be

discussed in the next section.

6.4. Balancing Techniques

6.4.1. Internal analysis

The discussion of Mitra's method in the last section provides a

bridge between modal model reduction and model reduction based on the

controllability and observability gramian 10-1l], here called balancing
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techniques. The idea here is to choose state coordinates such that the

controllability and/or observability gramian exhibit special strucuuture,

*' i.e., they are both diagonal with the same eigenvalues (called second order

modes [10]). Then if there is a separation in the spectra, the weakly

observable/controllable subsystem is discarded. As an example, note that if

BEO, then this reduction is just weak observability.

Thus, we see that Mitra's method is a combination of modal methods

and balancing techniques. The modal analysis enters in the first stage as

already discussed. The balancing is performed in the second stage by

selecting a basis such that the controllability gramian is block diagonal

(see (6.3.22)).

The balancing technique is related to the framework presented here

as follows. Given the system (6.3.1), choose P1 in (6.3.2) such that K,

the observability gramian, is block diagonal, i.e.,

PK 01 K. (6.4.1)

Since P is orthogonal, the eigenstructure of K is preserved. Now introduce* 1
a second transformation

= [ = (6.4.2)

where V is chosen such that

SVTK V = I i= 1,2. (6.4.3)*
i i

If Ki ViZiVT , take Vi
V iz .
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This makes the observability gramian an identity matrix. Now select a

- second matrix of the form (6.3.2) such that the controllability gramian Q

- is block diagonal, i.e., select P2 such that

F2QFT [Q 1 (6.4.4)

Since the observability gramian K is the identity it is unaffected by P2.

The second order modes are now

2 =((Q 2 1- 1,3. (6.4.5)

Sii

A transformation similar to V in (6.4.2) will create identical control-

lability and observability gramians. The idea, clearly, is to choose P such
2

that the spectra of Q1 and Q2 are separated, if possible. In this case, the

subsystem associated with the larger spectra is retained.

In Section 3.3 we discussed the relationship between near unobserv-

ability and the observability gramian. A dual theory immediately follows for

controllability. How then are these concepts related to balancing

techniques? Suppose that we compute the transformations above, but delete

V in (6.4.2). Then following the transformation P2 in (6.4.4), the observ-

ability gramian (6.4.1) becomes

(2KP2 1  2 - (6.4.5a)

I K (3
kiM (I+P 2P T)-1/2(K +P K P T)(I+ PP). (6.4.5b)

2 = (I + P 2 P 2
t (K1IPz2-P)K 27) (l+ P 2P 2

) - ' (6.4.5c)

K3 (I + PT P-1/2 (K2+ PT K ) Ip2)-'/6..5d
3 P2 2/ 2 2 1 2 2
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*-The intuition is this. Suppose that the original system is weakly observ-

--able and controllable, i.e.,

Gi(KI) >> aj(K2) for all ij(6.4.6)

a i(Qi) >> 0)

Then if I P21 is small, i.e., the weakly controllable and observable subspaces

are near each other, then the system is nearly balanced. This is equivalent

to asking that K be block diagonal. To see this, we note from (6.4.4) that

the weakly controllable subspace is

Z -SP [ (6.4.7)

Then we wish to estimate how close ZWC is to an K-invariant subspace. Apply

Theorem 3.2.3 to (6.4.5). Using singular value perturbation theorems [69],

we have

a i(K1 +P 2K2P2) _> oi(K ) + c_(P2K2P2 )

(6.4.8)

"i (K2 + PTK1 P2) < ai (K2 ) + 3(P2K1 P2)
6

a(P K P T) _:L(P)(

2 2 2 2 2( 2)()

a(P2K P ) < 23(P2)(K 221 2 2(1)

Thus, if 5(P2 )- = P21 is small and (6.4.6) holds, sep(K1,K4) will be nonzero.

For a bound on K2, we have

IK2 1 < 21 cos 01 lP 21(IK 1I-1K 21). (6.4.9)

This again shows that a small 1P21 leads to a nearly block diagonal K.

* Combining (6.4.8) and (6.4.9) we obtain the estimates in Theorems 3.2.2-3.2.3.
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It is interesting to note that a separation in a(K1 ) and a(

decreases the magnitude of allowable angles between the weakly controllable

and observable subspaces. (This separation increases the bound in (6.4.9).)

This is to be expected since the discarded subspace must be both weakly con-

trollable and observable.

The relationship between near unobservability and weak observability

was established in Section 3.4. Roughly, the system is weakly observable if

the Z[C] is near the fast subspace. A dual analysis of controllability would

yield that the system is weakly controllable if the fi[B] is near the slow

subspace. Both weak controllability and observability require that the slow

and fast subspaces be nearly orthogonal. These properties characterize a

balanced system which will reduce. However, note that if, say, ai(K) are closely

grouped and ai (Q) are separated, then the system will decompose according to

the controllability criterion. A dual situation also occurs.

6.4.2. External analysis

It should be noted that this model reduction technique is based on

internal properties rather than external properties [10] such as impulse

response

H(t) - Ce AtB. (6.4.10)

This is in contrast to Mitra's method which is based on the systems impulse

response. To see this, suppose that (A,B,C) in (6.4.10) are given by (6.3.5)

where X is selected as in (6.3.18). Then compute
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fI(t)HT(t)dt" CcreAtBBTATtdt]CT (6.4.11a)

0 0

r ~ ir P11 P12 X)]
M-(- 1Pl 2X T (6.4.llb)

0 Q3  P1

W (P1 1-P 2X)Q (PII-P 2X)T + P12Q3P 2  (6.4.110

* - ~T -1(..ld
Q3 aQ 3-Q2Q1 Q2' (6.4.11d)

From (6.3.21a) and (6.4.10) we see that the first term in (6.4.11c) is the

impulse response of the reduced order model. Thus the second term in

(6.4.11c) represents the error as we derived in (6.3.19).

A similar analysis can relate the internal analysis above to the

external behavior. Suppose that the system (6.3.1) has (almost) been

balanced with the transformations (6.4.1), (6.4.2), and (6.4.4). Then the

system will have the form

- + u (6.4.12a)
SrF 3 F4 x r G2

Sy - [C1  C2] (6.4.12b)
IIir l

C M H1 [PlIV 1P 2+ PV 1 2 ]2  (6.4.12c)
1 2 1 2

C2 - H [P1 V P12 + P12 22 2 (6.4.12d)

i P

p2l P22
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Doing the computations in (6.4.11) we have

Next observe that since Q is block diagonal,

AQ + QA - -BB T  (6.4.14)

decomposes as

FIQ1 + QF - T (6.4.15a)

T T
F2Q2 + QIF3 - (6.4.15b)

" T -G2GT. (6.4.15c)
F4Q3  Q3F4  2 (

Hence, we can again measure the error between the impulse responses of the

full and reduced order model by imposing a measure on (6.4.13).

We can make a few qualitative judgments based on (6.4.12d) and

(6.4.13). Both weak controllability and observability enter in two ways.

First, they enter geometrically through IPI21 -lsin Gil, i-1,2. Here 01

measures the angles between ZI and the weakly observable space and 02 measures

the angels between the weakly observable space and the weakly controllable

4 space. Secondly, they enter through the eigenvalues associated with each

space. That is, the eigenvalues of K enter through V1 and V2 (see (6.4.3))

and the eigenvalues of Q enter through Q3'

There are other ways to measure the error when balancing is used

to obtain a reduced order model [111. See Section 6.5.2.

a

4
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6.5. Cost Decompositions

6.5.1. Formulation

All reduced order models deviate from the true system in some way.

There are many ways of evaluating this error as is evidenced from this

chapter. Evaluation of a reduced order model, then depends on the evaluation

of the error. In an effort to put these methods in a common framework,

Skelton [11 has suggested evaluating a candidate reduced order model by

identifying its contribution to a cost function. Presented in the framework

of Chapter 5, the residual subsystem which contributes little to the cost

is truncated.

Suppose that u(t) in (6.3.1a) is a zero mean Gaussian process with

covariance

E{u(T)u T(t)} - S6(t-T). (6.5.1)

Define a cost function for (6.3.1a) as

v - lir E{x (t)Qx(t)1

- lir E{x (t)C Cx(t)}

- lm Efly(t)l2} (6.5.2)

where C is a square root of the nxn symmetric positive semidefinite matrix

Q. (This illustrates the origin of C even in other model reduction

contexts.) It is easily shown [70] that

v - tr KBSBT (6.5.3)

where K is the observability gramian of (6.3.1) (see (3.4.4c)).
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Consider (6.3.1) where (6.3.1b) is replaced by

Xr]

With respect to this partitioning, we decompose the cost as

v=v 1 +v 2

Vi  Vil + Vi2  (6.5.5)

Vj -tr K JBJSB 1 1,2.ii

If V1 >> V2, this suggests that we take (A1, 1,CI) as a reduced order model as

discussed in Section 5.2. However, in general the cost associated with the

reduced order model will not be V because of the coupling in (6.3.1) and

(6.5.5). Therefore, define the error cost as

6V - lim EfIy(t)-y (t)|}. (6.5.6)

From (6.5.5) and (6.5.6) various indexes can be derived [11].

The general approach is to select special representations to

derive various expressions for the cost decomposition quantities above. This

can be easily done in our framework and we will discuss the various methods

above here. To evaluate 6V in (6.5.6) is somewhat more difficult.

Expressions can be derived by augmenting the model state equations (6.3.1a)

with the reduced order model equations and defining an appropriate output

equation. Then 6V is computed as in (6.5.3). The details are found in

(11]. We shall discuss 6V only where our approach leads to insight and

simplifications (i.e., modal methods).
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6.5.2. Cost decoupling

To gain insight into the contribution of various subsystems to

the cost, it might be useful to identify coordinates in which the costs V1

and V2 are uncoupled, i.e., Vj- 0, ivj. It is easy to see from (6.5.3)

that two sufficient conditions for this are 1) K is block diagonal, or

2) BSBT is block diagonal. Either of these conditions can be accomplished

by an orthogonal transformation as in (6.3.2). Motivations for choosing •

these transformations can be obtained from Chapter 3 and Section 6.4

Intuitively, this must be connected to weak observability. In

fact, the connection is explicit if we reformulate the problem by assuming

that u(t)- 0 and the initial condition has a zero mean Gaussian distribution

with covariance ESE . If the cost function is taken to be

V =f ly(t)Idt, (6.5.7)
0

then its value is given in (6.5.3). Hence, each cost component Vi measures

the observability of that subsystem when the initial states are distri-

buted as BSBT (rather than I as assumed in Chapter 3). If K is block

* diagonalized, truncating the residual system corresponds to eliminating

the weakly unobservable states.

It should be emphasized that the error cost 6V is not V This

cost must be determined from the full error model [il]. This corresponds to

internal-external discussion of Section 6.4.

To evaluate the error cost 6V requires that the reduced order model

be stable. By block diagonalizing K, this reduced order model is almost

always stable [10]. An even stronger result is proved in (71].

I
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Block diagonalizing BSBT has been called disturbance decoupling.

It is possible to simultaneously block diagonalize both K and BSBT. The

required transformations are the transformations needed for balancing

(Section 6.4, (6.4.1)-(6.4.4) where BSBT replaces Q). In this form, it is

easy to see that the truncated states should be weakly observable states

which are not disturbed too much.

6.5.3. The GHR

A second obvious choice of representation is the GHR (6.3.1), so

that the reduced order model is the aggregate subsystem. A real issue here

is the stability of the reduced order model since it is not guaranteed.

However, suppose the system is nearly unobservable. Then by Theorem 3.3.3,

X(A 1) approximates a subset of X(A). In this case the reduced order model

should be stable. Bounds can be derived using the results in Sections 3.3

and 3.4.

The relationship of these coordinates to cost decoupled coordinates

follows from the discussion of near unobservability and weak observability.

Here again it is easy to see that the weakly observable states should not

be heavily distributed to produce a good reduced order model.

6.5.4. Modal methods

Lastly, consider the modal methods of Section 6.3. Assume that

the system is represented as in (6.3.5a) following transformations (6.3.2)

and (6.3.4). In these coordinates it is not easy to give a simple

expression for the component costs--hence, it is not obvious a priori how to

select P in (6.3.2) (in contrast to the above two methods).
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These coordinates simplify the calculation of 6V. Indeed, the

error model is given by (6.3.5a) with output equation (6.3.7). With respect to

this representation, the observability gramian of (6.3.5a)-(6.3.7) is

Icm[11 2] (6.5.8)
3

where

K3F22 +TT = P ( a
322 22K3 P12P12 (6.5.9a)

2F + FTK -F2113 (6.5.9b)

K FII + F1IK1 - -K2F21  F 21K 2  (6.5.9c)

which is the result in [11]. Now the error cost is calculated from

K KGa
6V = tr[ ':[1G 2(..0

2 3  G2

In developing the modal representation (6.3.5), the submatrix X

in the transformation (6.3.4) was not specifled. We see now that it can be

used in two ways here which lead to simplifications. First, X can be chosen

such that there is disturbance decoupling. For instance, if G1 is nonsingular,

we can choose X such that G2 =0. However, the motivation for this seems to

be only computational simplicity.

The second choice of X would be such that F12 -0. Then the

coordinates in (6.3.5) are closer to the well-known modal coordinates. In

this case the solutions to both (6.5.9b) and (6.5.9c) are Ki K 2 0. Thus,

4 the cost reduces .to

,M



| v---T2s. (6.5.11) .

* The ideal solution would be an optimal choice of X somehwere between these

* tow extremes. However, a closed form solution does not seem possible at this

time.

o-h
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CHAPTER 7

THREE CONTROL COMPONENT DESIGN

7.1. Introduction

Having introduced the subspaces t in Chapter 3, we studied their
i

behavior under state feedback in Chapter 4. The intent of that analysis was

U to lay the foundation for the use of these subspaces in closed loop design.

In this chapter we introduce a control design scheme, called Three Control

Component Design (TCCD).[2,28,72]; based on the closed loop subspaces z L

0 We then see how this procedure relates to several control design problems.

The TCCD is derived from the system representation produced by MCA.

Hence, we immediately have a geometrical interpretation of the TCCD. This

allows us to connect it with several known [3 ] results and extend these

ideas. However, a deeper insight is also gained by considering MCA in a

state feedback context; the TCCD. First, the TCCD establishes an a priori

control structure which reflects a hierarchy of design goals by giving

priority in the design procedure to the control component used to meet the

primary design objectives. This is done by integrating the control objectives

into the GHR. Secondly, the TCCD explicitly identifies a reduced order model

which is used to meet the primary design objectives. Thus reduced order

modeling, implying a reduction in control computation, is integrated directly

into the design process. Finally, the combination of these two aspects into

an overall design procedure allows for the evaluation of the trade-off

between the order of the reduced order model and the complexity of the

control computation.
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The decomposition of the control design in the TCCD is directly

* related to the system decomposition discussed in Chapter 5. Hence, this

* makes it useful f or decentralized control of interconnected subsystems.

While the TCCD applies to any of the system structures in Section 5.3, it

* is discussed here for systems connected through their outputs. However,

* the approach here can easily be used for any of the other structures in

Section 5.3.

When the TCCD is used in this special context, it takes on

additional properties. The information and control structure is exploited

to produce a control scheme which is hierarchical and partially decentralized.

The control problem is decomposed into a global problem, which is a coordi-

nator problem for the interaction variables, and local control problems

which lead to a decentralized design. Through this analysis we are able to

* identify what models are necessary for computing the control, and what

information exchange is necessary for implementing the control.

This approach to control of an interconnected system is different

* from most other schemes (51,73-76]. First, the scheme is not necessarily

decentralized. If the interactions between subsystems are strong then it

may be justified to relax the decentralization constraint (if possible).

The control scheme proposed here specifically identifies the control

component associated with the interactions and allows for a (partially)

centralized design. Secondly, the interaction variables are given priority

in the design while the local control is computed only after the inter-

action variables are compensated. This is exactly opposite of many decen-

tralized schemes which assign the local controls first and then compensate

for the interactions (51,73,76]. Finally, the control scheme is based on the
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information and control structure and not on the physical subsystem

structure directly as are most other schemes [51,73-76].

If the purpose of the state feedback matrix is to place the closed

loop poles, then the TCCD decomposes this one large problem into two smaller

problems. It is then left to the designer to choose his/her favorite design

technique. However, here we also discuss the use of the TCCD in an optimalU
control framework [ 2]. This analysis when combined with interconnected

systems has applications in dynamic games C 2]. We discuss a Pareto game

here.

The discussion of the TCCD in decentralized control is a straight-

forward application of these ideas. As a novel use of this approach, we

discuss a noninteraction problem. By combining the decomposition of

Chapter 5 directly with the TCCD, we are able to solve the problem of

decoupling a system with static output feedback. While solutions to this

problem are known [3,77-82], the procedures here bring fresh insight and new

interpretations to the issues involved here.

Finally, the TCCD is applied to a class of nonlinear systems [83].

0 The main idea is to extend the concept of invariant structure of linear

system theory [44! to a class of nonlinear systems characterized by

arbitrary dynamics and a collection of static nonlinearities, and to

* determine a partial invariant structure of such nonlinear systems and its

basic characteristics. A number of significant gains follow from such a

development. First is an explicit use of nonlinear system structure, loca-

0 tion of nonlinearities, and structure of inputs into the nonlinearities in

the classification of nonlinear control systems. Second is the extension
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of structural invariants defined for linear systems to a wide class of

nonlinear systems, and the use of these invariants in the classification of

nonlinear system types. Third is a natural decomposition of the control

structure in nonlinear systems into three control components: the first is

a compensatory component that brings out the invariant structure and reduces

the nonlinear system to a tandem configuration of an inherently nonlinear

subsystem forcing a residual linear subsystem through static nonlinear inter-

connections; the second is a (possibly nonlinear) control component that

* solves the synthesis problem associated with the inherently nonlinear part

of the system; the third is the residual control component that shapes the

dynamics of the residual linear system. It is stressed that the major gain

is in the decomposition of the nonlinear synthesis problem since nonlinear

synthesis need be considered only in providing controls adequate for the

* inherently nonlinear part of the system.

This chapter is organized as follows. Section 7.2 discusses the

basic properties of the TCCD. These follow directly from the results in

* Chapter 4. The TCCD is then extended to interconnected systems in Section

7.3. In Section 7.4 the TCCD is discussed in an optimal control framework.

Section 7.5 discusses output decoupling. Section 7.6 extends these ideas

to nonlinear systems.

7.2. Basic Properties

7.2.1. Structure

In this section, we outline the basic principles behind the TCCD.

In fact, the basic properties follow immediately from MCA. We assume, first,
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that the system (C.1)-(C.2) has been transformed by MCA to yield

A .+(7.2.la)

y [, 1  0] (7.2.1b)

'I

With respect to this basis consider the feedback law

[o:]l K' 1 ; 5r][+IV
(7.2.2)

[0D][KA][ KR2[1 [r
which we have separated into three components. The first component is

x j r (7.2.3)

where KD is chosen such that

C R+ BGKA -0. (7.2.4)

MCA guarantees the existence (and uniqueness) of KD. With KD chosen as in

(7.2.4), the closed loop aggregate subsystem will not depend on the

residual states Rr. Thus, we call this first component the decoupling

control.

By specifying the decoupling control as in (7.2.4), the aggregate

subsystem becomes a reduced order model for the output variables y. If

the primarydesign objectives are given for these variables, then these

-J
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objectives can be met by speciftying the second component of the control

(7.2.5)

called the aggresate control.

The decoupling control has reduced the closed loop system to a

tandem configuration of the aggregate subsystem driving the residual sub-

system. Once the aggregate control (7.2.5) has been selected, we can use

the third control component

,U(7.2.6)

the residual control, to stabilize and control the residual.

Thus the TCCD is a decomposition of the control law based on the

information and input structure. The design is hierarchical in that the

aggregate control can be selected freely to meet the primary design objec-

tives but the residual control depends on the aggregate control and can only

be computed after the aggregate control.

The geometric interpretation of MCA gives us an immediate geo-

metric interpretation of the TCCD. The selection of KD in (7.2.4) provides

the essential construction of a state feedback matrix K such that - £

Another way of saying this is that K makes £* closed loop invariant. It is

clear from (7.2.1) that

P sp (7.2.7)
Or
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is a closed loop unobservable subspace. Since £* is the supremal such sub-

" space (Proposition 4.2.4), the decoupling control in (7.2.4) is making the

system maximally unobservable [ 4]. Therefore we will call this choice of

decoupling control the maximal decoupling control. We will discuss other

choices of decoupling controls below. However, next we turn to properties

of the aggregate and residual subsystems generated by maximal decoupling.

If the maximal decoupling control is used to aggregate the system,

the residual state space is TA. Since V* is unique [ 3 , Theorem 4.1], the

corresponding reduced order model is, in this sense, unique. As the design

of the aggregate and residual control components involves standard design

procedures for the aggregate and residual subsystems respectively, we will

examine the stabilizability of these subsystems and see how they relate to

the original system properties. This analysis applies to certain steps of

the synthesis procedure described above. The final goal is to produce a

state feedback law. Hence, certain aspects of reduced order models are not

relevant here, such as stability of the reduced order model. We will be

interested in those structural properties that relate to the overall synthesis

* procedure.

7.2.2. Aggregate subsystem

Let (AB) denote the reachable space of (7.2.1) and (AGIBG) the

* reachable space of the aggregate subsystem generated by the maximal

decoupling control. Furthermore, let ZICZ denote the state space of the

aggregate subsystem.

6 Proposition 7.2.1: [28] (AIB) flX (AGBG,.

Proof: Consider the following system which aggregates following two cycles

of MCA
6
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y.- ' F. .... 0 0
11 12 13 11

y Fl1 • .0 0 0 0 "

F -.F.G-0

-. y3 P 'l0 0 "0 O Yi+ 0 0 0 U2 (7.2.8) ,.'

Y2  F21 " 22 F 23 L 2. 0 G22 0 2J......... .o.. ..o
A A A 0 0 B

I.L" 2" LA1 3 3 3

y(y) -[Hl 0 01 [i;]
L12

From our assumption and properties of MCA, it follows that G and G are

nonsingular matrices. Hence, the maximal decoupling control is computed to

cancel the subblocks F 13and F 2*Since the reachable space is the same for

the systems (7.2.1) and (7.2.8), denote the system matrices in (7.2.8) by

(A,B,C). Similarly, denote the aggregate subsystem (generated by the

maximal decoupling control) by (F,G,H). Let

s[ ' 2 4 p [P Y2 (7.2.9)

With this notation, we have that

(AJID (AIBU 1 ) + (AIEQ4 2) (7.2.10)

From the special representation in (7.2.8), it follows that

l' I sp B 33" 2)2  1 3 3  2 9 F13B33 2'• (7.2.11)

Withthisnottion wehavetha
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or Z r) (AIB3 3", 2 ) 2 c Gc (AGIEG) (7.2.12)

We conclude that

Z1  (AI13 3 24C (AG IBG) (7.2.13)

and so the result follows from (7.2.10).

The special system in (7.2.8) contains all of the relevant structure

for Proposition 7.2.1. An easy induction argument extends the result to

all systems (7.2.1).

Thus the aggregate subsystem inherits its reachability properties

from the original system and these properties are not altered by this choice

of decoupling control. We now given an interpretation of the aggregate's

unreachable modes.

Definition 7.2.2 [841: The input decoupling zeros are the roots of the

invariant polynomials of [sI-AB]. The output decoupling zeros are the

roots of the invariant polynomials of

[I].

The system zeros are the invariant zeros together with those decoupling

zeros not already included in the invariant zeros.

4i Proposition 7.2.3: Let the system (7.2.1) be aggregated by the maximal

decoupling control. Then the eigenvalues of the unreachable modes of the

aggregate are input decoupling zeros. Hence, they are system zeros which

are not invariant zeros.
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Proof: The first statement follows easily from Definition 7.2.2 and

Proposition 7.2.1. Since all the invariant zeros are in the residual,

*(Proposition 4.2.7, see discussion below), the second statement follows, a

Porter [85] has given a similar description of system zeros which are not

invariant zeros.

7.2.3. The residual subsystem

In fact, the residual subsystem's properties are described in

Section 4.2. From Proposition 4.2.5, the controllable subspace of the

residual is exactly 0*, the supremal controllability subspace in 71[C].

Furthermore, we know that some of the residual's poles are fixed by the

maximal decoupling control and that these poles are exactly the invariant

zeros (Proposition 4.2.7). Recall that we interpreted the maximal decoupling

control as making the system maximally unobservable. This has been inter-

preted as canceling some of the system poles by the invariant zeros [86-89]

and we recover those results here.

The TCCD allows us to integrate all of the structural results of

this section directly into a control synthesis. This allows us to evaluate

the procedure as we work through it and modify it to take into account

important structural properties of the system. In particular, we note

that an unstable invariant zero will result in an unstable design. Next

we will discuss ways to structurally modify the aggregate and residual sub-

system to circumvent this and other problems.

7.2.4. Alternative decoupling strategies

In the most general terms, the TCCD induces a system decomposition.

Maximal decoupling represents an extreme case of this decomposition. Other
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decoupling controls will produce other decompositions. The different

decompositions possible reflect the designer's freedom. One particular use

of this freedom is discussed in detail below.

As pointed out above, the maximal decoupling control will produce

an unstable design if one of the invariant zeros is unstable. This situa-

tion may be corrected by choosing a decoupling control other than the

maximal decoupling control. This corresponas to selecting a feedback matrix

L such that I .C,. The geometrical aspects of this problem were discussed

in Section 4.2. We shall apply that analysis to the design problem at

hand, i.e., how to choose a decoupling control to produce a stable residual.

Since we are interested in the spectrum of the residual in the

factor space mod d*, we shall assume R*=-0. Then (7.2.1) becomes

(7.2.14)
Xr B GR Al 5r 0

It is easy now to compute the decoupling control. First, identify the

invariant subspace associated with the stable invariant zeros by finding

a nonsingular matrix T such that

T- 1. [ (7.2.15)
AsU AS

4 Here, the eigenvalues of AS are the stable invariant zeros. Such a trans-

formation always exists since the spectra of Ad and AS are disjoint. We

4
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interpret this as a change of basis in state space as

(7.2.16)
X 0 T

and apply it to (7.2.14). The result is

AG Cl CRiG
I B AJ + u (7.2.17)

G~2 [B 1 AsU 0 2 [121L BGR2 A SU A S J 1 1 L

y- [H1  0 0 ] [l21
L 2

We can now immediately compute the decoupling control as

u = -B 1c2 + V. (7.2.18)

We note that the aggregate subsystem in (7.2.17) again inherits

the reachability properties from the original system. The proof is similar

to the proof of Proposition 7.2.1 and is omitted. Furthermore, by using

the results of Section 4.2 we can see directly that the invariant zeros of

the aggregate subsystem are exactly the unstable invariant zeros of the

original system. Finally, the residual dynamics are completely fixed, but

stable by construction. Hence, the TCCD with decoupling control (7.2.18)

will produce a stable design. The extension of these ideas to systems in

which 6*#0 is straightforward and discussed in Section 4.2.5.

The discussion above is a particular case of a general ptocedure

for constructing alternative decoupling strategies. The analysis in
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Chapters 2-6 provides the general background to use this freedom. In

particular, the results in Chapter 5 may be used to decompose the system

along physical lines that are still compatible with the TCCD. Or since the

aggregate subsystem is a reduced order model of the output variables, the

discussion in Chapter 6 provides insight for a good selection of a decoupling

control.

7.3. Control of Interconnected Systems

6 7.3.1 Systems connected through their outputs

The TCCD is based onthe system decomposition produced by MCA.

Thus, when interconnected systems are decomposed by 1lCA, the TCCD should have

a direct application. Indeed, the TCCD can be applied to any of the

decompositions discussed in Section 5.3. We shall discuss its application

to one particular structure described in 1Example 5.3.3. However, the

approach here will generalize to any system structure produced by MCA or

chained aggregation.

For ease of presentation, we recall the system structure from

Example 5.3.3 as

Y A G- AGI CRI 0 y BG 0 0 0
-2 -2

y A 02 0 BI 0 0 u
AG21 AG2 CR2 0 B G2

.i - +
kr BGR I  BGR12 IARl 0 x B0 0 lB 0 u

.2 I2I -2

L r  AGR21 BGR2  AR2 - X AR2 R2-

(7.3.1)

• , -•iSi i i
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[l][c,
yl] [CGI 0 1 0 y

y2 0 CG 1 0 0 x 1
G I

G22
r.J

By rearranging the states, we see that (7.3.1) consists of two inter-

connected subsystems

c AGi - BGi 0 1Ai,3-i 3-1
A + i+ y . (7.3.2)

x [r_1B[GRi ARi]['r] BR, B RiJ Bu [;~,3i

Note that (7.3.1) highlights the information and control structure in the

composite system while (7.3.2) emphasizes the physical subsystem structure.

Equation (7.3.2) also emphasizes that these subsytems are interconnected

through their outputs. So we interpret the state variables y as system

wide interconnection variables. A model of these variables is given by the

aggregate subsystem (n (7.3.1). The remaining states xi are interpreted
r

as local state variables. The local nature of these states is reflected in

the block diagonal structure of the residuai dynamics.

Implicit in the TCCD is a ranking in the desig- goals. It is

assumed that greater priority is given to the output variables, i.e., the

aggregate subsystem. If in (7.3.1) we are primarily concerned with the
4

system wide interaction variables, then the TCCD has a natural application.

Indeed, it has other interesting features.

First consider the decoupling control. The block diagonal

structure in (7.3.1) yields

x + w = 1,2. (7.-.3)

m II I r
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1C
This control component is decentralized in that it can be implemented

locally. Once this is done, the interaction variables are modeled by the

aggregate subsystem. The aggregate control is given by

[ - 1  :A2 -2 2 (7.3.4)

Further structure may be imposed on (7.3.4) as fits the problem. The aggre-

gate control reflects the essence of the interconnected nature of the problem.

*e The aggregate subsystem is the model each subsystem needs to compute its

aggregate control. The control law in (7.3.4) identifies the information

exchange necessary to implement the scheme.

C The residual control is given by

[K GR2  K GR:2] [ ]j +[ KR2] [.2-2 (7.35)"KGR21xx] [1

The component of the residual control that shapes the dynamics of the

residual subsystem is again decentralized. The feedforward term of the

aggregate variables can be decentralized or not according to what information

is locally available.

* 7.3.2. Two area power system

In Section 5.4 we considered the decomposition of a two area power

system. The final decomposition is given in (5.4.11). A quick comparison

* with (7.3.1) shows that this power system exhibits the structure we have

been discussion in this section.

The application of the TCCD to (5.4.11) is straight forward. Each

area computes its own decoupling control as
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-i xr + v (7.3.6a)

2j1j i- 1,2 j- 3,...,8. (7.3.6b)

That is to say, KD is a lx6 matrix with elements given by (7.3.6b). This

eliminates the aggregate systems dependence of the residual states. Now an

aggregate control can be designed to regulate the power flow and the frequency

deviations.

The last step is control of the residual systems in (5.4.11b)
-i

using u . This is a standard design procedure once the aggregate control is

known.

7.4. Optimal Control

7.4.1. Decomposition

The TCCD can be applied in linear quadratic optimal control

problem to obtain a suboptimal control [ 2]. To see how this goes, suppose

that the system is represented as in (7.2.1). With respect to this basis, let

the cost function be given by

1 f T TT [ 2 1 + T 1  R (7.4.1)
0 r[ QTT T R3

J 0 r 2 Q3 Xr R2 d(.4

with all the usual assumptions. The optimal strategy u*= K*x' would minimize

J for all initial conditions.

We will consider a suboptimal solution based on the TCCD.

I
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rai A + 1J+'0r+t['a] 
(7.4.2)

Substituting (7.4.2) into (7.4.1), we obtain a cost function parameterized

on K, which we emphasize by writing J(K%), which decomposes as

J(K ) JA JR (7.4.3)

U where

JA - 2 0 + 'IUA dt (7.4.4a)

0T

-T TT 0 T D
2 - jy x]LT 2 Ki~Lr
0 [T+ R1A Q3 +lRlK DI

+ 2uTRTKA RT D [9 JR dt. (7.4.4b)
2 A 2KD3

Since the decoupling control makes the system unobservable, the

original optimal control problem decomposes into two subproblems. The

first is defined on the aggregate subsystem with cost function JA (7.4.'-).

This involves the solution of a Riccati equation of order r. Once the

aggregate control has been determined, the system (7.2.1a) becomes

= A K + u . ( 7 . 4 . 5 )GG L r B]

The residual control is now computed using the performance index JR (7.4.4b)

in conjunction with the system constraint (7.4.5).

This scheme is suboptimal because it is parameterized on the

decoupling control K . It may be asked when this solution approaches an

0D
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optimal solution. We make the following observation. Suppose that

Q2 Q R 0 in (7.4.1), that is, only the outputs are penalized and

the control weighting is block diagonal. If the residual subsystem was

unobservable in the sense that C .0, the optimum solution would be given

by the aggregate solution. Next observe that the decoupling control is

directly proportional to CR (see (7.2.4)), so that KD-O as CR* -0. Further,

from (74.4.b) we have

jR fas f v R 0 (7.4.6)S0

If the residual subsystem is stable, we have a- 0. In summary, if the output

equation (7.2.1b) is derived from the state weighting matrix in (7.4.1) (Q=C TC),

then the suboptimal control via the TCCD approaches the optimal control as

the system becomes unobservable.

7.4.2. A Pareto game

This optimal control approach to the TCCD when combined with the

decentralized control of Section 7.3, has applications in game theory[2,55].

As an example, consider the following Pareto game. Assume we have the

system structure of (7.3.1) such that each subsystem (7.3.2) has associated

with it a performance index of the form (7.4.1). Each player (subsystem)

is to choose an optimal strategy u*- Kxxi such that any deviation from the

optimal strategy causes an increase in one of the cost functions; i.e.,

there does not exist a strategy pair (K OK 0 ) such that
1' 2

o K0 0 J*(*,*, i- 1,2 (7.4.7)
i 1 2 i1 2
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with strict inequality holding for some i. Thus the two players cooperate to

minimize both cost functions.

As outlined above, each player selects his decoupling control and

applies it locally. Then the choice of the aggregate control, the coordinator

problem in the terminology of Section 7.3, becomes a reduced order Pareto

game in which each subsystem has a cost function of the form (7.4.4a). The

structure of the aggregate control is given in (7.3.4) where K -K -0

is a structural constraint.

Once the coordinator problem is solved, we can solve the residual

problem. Note, however, that the residuals subsystems in (7.3.1) are

mutually uncontrollable, and because of the enforced decentralization of the

control, this structure is preserved. Thus, the Pareto game defined on the

residual subsystems in (7.3.1) decomposes into two local control problems

with, say for i-1, cost function JR1 (7.4.4b) subject to

2 c 2

A 2 2 0+ u1 (7.4.8)

Note that there is a computational savings since the states of the other

residual are not included in (7.4.8). This savings may be considerable if

there are more than two players.

7.5. Output Decoupling

Having introduced the TCCD in Section 7.2, we showed how it could

be used in decentralized control (Section 7.3) and optimal control

I
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(Section 7.4). We mention again that these results depend on the system

decomposition. In this section we will use these two ideas, decomposition

and the TCCD, in a slightly different way in a standard compensation problem.

By output decoupling we mean computing a static output feedback

control law

u - Ky + Vv (7.5.1)

such that in the closed loop system, the i-th input vector controls only

the i-th output vector. This implies that the closed loop system forms a

set of decoupled subsystems. That is to say, the open loop system consisted

of a set of interconnected systems which we have decoupled by the feedback

law (7.5.1). From this point of view, the main problem is to identify the

open loop interconnected system structure. In this section, we shall

apply the results of Chapter 5 to solve this problem. This will illustrate

how the information and control structure can be used in compensator design.

The problem of output decoupling has been of long-sLanding

interest (77-82]. Results have been obtained in the frequency domain (77]

and in the time domain from both geometric [3,80,82] and matrix [ 78,79,81]

analysis. The main emphasis here is on the approach to the problem ane

the corresponding insight obtained into the structure of the soiutia..

This problem illustrates the use of the more general concepts developed

above.

Given the system (C.l)-(C.2), suppose that the output vector has

1 2been partitioned into two subvectors y and y , i.e., (C.2) becomes
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] 2 x. (7.5.2)

Nov we want to decompose the system into two subsystems with (7.5.2) as

their respective outputs. To thi6 end apply one step of chained aggregation

to obtain

7.11 A C
y AGi AG12 Cl l

72  2

[AG 21 AG2 CR2 +BG2u(.3a

ri LGRi GR2 AR x. L.R-

2 (7.5 .3b)

To obtain the representation in (7.5.3b), the row spaces of C

and C2 in (7.5.2) must be independent. This represents a noninteraction in

the information structure. Intuitively, if the row spaces were not indepen-

dent, then the same measurement would occur in both outputs and they could

not be independently controlled.

Next, to identify the input structure overlap we apply the trans-

formations of MCA. In addition we require that V satisfy

B G1 V . _G .0 (7.5.4)

I [:G21 BG2 0

That is to say, the input transformation V not only identifies the null

space of the aggregate input matrix, but also block doagonalizes it in
U

accordance with the output partitioning. This requires that the input

decompose with respect to the given output structure. This is a necessary
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condition. Intuitively, if (7.5.4) does not hold, the same input affects

both outputs.

To see the role of feedback in this setting, suppose that C in

(7.5.2) is monic (or the outputs are "complete" (3 ]). In that case the

dimension of the residual state space in (7.5.3) is zero. Assuming that

(7.5.4) holds, (7.5.3) reduces to

S : AG2 " (7.5.5)

=y I2+IG AG2 I ' 1 L G u:~

To decouple the system (7.5.5) we would like to cancel A and A This
G21 G12*Ti

is possible if and only if

6t [AGl 2I C [BGl ]

(7.5.6)
6t[A G211 C G[G G2].

Hence, (7.5.6) is also a necessary condition for decoupling.

If (7.5.6) is satisfied, then let

AGi,3-i Gi il i= 1,2. (7.5.7)

In this form it is obvious that (7.5.5) is two interconnected subsystems

as described in Example 5.4.4. To decouple these two subsystems, we apply

feedback

-i 3 -i (7.5.8)

The total feedback matrix becomes
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K l - N12

K - [1(7.5.9)L.. L-N K 2

where K.1 and K22 are chosen to place the poles of the subsystems. Note

that the feedback matrix has two distinct functions; i) N11 and N modify
11 21

the information structure of the system and ii) K11 and K22 change the

dynamics of the subsystems.

We also see that the feedback in (7.5.9) has the structure of the

TCCD. Consider only the first output, yl, in (7.5.5). Then the off diagonal

block in (7.5.9), i.e., (7.5.8) with i-i, is the decoupling control. The

aggregate control is defined by K1 and the residual control by K22. A
2

similar interpretation is obtained by considering the second output, y

Thus.far we have identified the three essential components of the

decoupling problem. First, the information structure must be nonoverlapping

(existence of (7.5.3b)). Secondly, the control must decompose with respect

to this information structure (existence of (7.5.4)). These two conditions

establish well defined subsystems of the original system. Thirdly, the

interconnection structure must be of special form (7.5.6). This guarantees
0

the existence of a decoupling feedback. It also establishes the existence

of a particular interconnection structure between the subsystems. We shall

see that these three conditions reoccur in the general case.
0

Now suppose that the dimension of the residual system in (7.5.3)

is not zero and that (7.5.4) and (7.5.6) hold (the aggregate subsystem

decouples). We can describe the residual by the quadruple (AR,BR,BGRCR).

Here we can think of BR representing an "active" input (one available for

control) and BGR a "passive" input.

e
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With this distinction, the problem of decoupling the residual is

similar to decoupling the aggregate. First note that CR cannot be modified

using output feedback. So we simply apply the procedure described above to

the residual. Two cases occur as BR is zero or not. First suppose B R#0.

Then the second step of chained aggregation is applied to C and the input
R

transformation is applied to B . Suppose that C is monic and that following
R* R

the transformation the residual system has the representation

R2R BGR21 B GR22 r

(7.5.10)

L CRl1 ['1 01 0=!q [E, ]  0 .
C ~ 0 E2J ?(iR2 2

To obtain (7.5.10), it is first necessary that the rows of CRI

are independent of the rows of CR2 . Thus the information structure must

continue to be nonoverlapping. Secondly, BR must be block diagonalizable;

i.e., the input structure must continue to decompose according to the informa-

tion structure.

Now to decouple the system in (7.5.10), we would like to cancel

ARI2, AR21, BGR12, and BGR21. However, the residual states are not avail-

able for feedback. So it must be structurally true that A R21 0 and

ARl2  0. The outputs are available for feedback giving the decoupling

conditions

6 Bsi,3_i ] C 6(BR ] ' i= 1,2 (7.5.11)
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or

B -B N (7.5.12)
Gi,3-i RI 12•

The relationship in (7.5.12) again defines the feedback necessary to

decouple the system. It also leads to the subsystem interconnection structure

in Example 5.4.4.

The composite feedback matrix continues to decompose as in (7.5.9)

into two distinct control functions. Part of the control is used to

(informationally) decouple the subsystems. The remaining freedom in the

control places the poles of the decoupled subsystems. This is an output

pole placement problem.

If BR. O, then BG plays the role of the input matrix, i.e., the

input transformation is defined with respect to B GR. Also note there is

no possibility for feedback. So if the system is to decouple the corre-

sponding matrices must be structurally block diagonal. This again leads

to the subsystem interconnection structure in Example 5.4.4.

If C in (7.5.3) is not monic, then (7.5.10) actually will split
R

into an aggregate and a residual. The above analysis is then applied to

the aggregate. If all the conditions hold, the analysis is repeated for

the residual. This process continues until the system is decoupled.

The main idea behind this approach is to untangle the information

and control structures. The system can be decoupled when these structures

decompose in the proper way. This leads to a special representation of the

system as interconnected subsystems. These results are summarized in the

following.

I- m |. ...
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Proposition 7.5.1: (90] The system (C.1)-(C.2) can be decoupled by output feed-

back (7.5.1) if and only if it can be represented as an input-output inter-

connected system with respect to the given output partition. o

The above analysis not only tells us when decoupling is possible,

but also identifies the feedback structure which accomplishes decoupling.

This structure includes the part which specifically decouples the system and

the remaining freedom to place the closed loop poles. Thus this analysis

nicely illustrates the close interrelationship between the information and

control structure and feedback design.

7.6. Nonlinear Systems

7.6.1. Preliminaries

Consider the nonlinear system

k(t) = Ax(t) + Bu(t) + Df(y(t)) x(O), tz O (7.6.1a)

y(t) - Cx(t) (7.6.1b)

where xE Rn, uERm, and YE Rr The nonlinearities are represented by the

function f R -R PR with f(O) = 0. Furthermore, (A,B,C,D) are real constant

matrices.

In this section we will discuss a (partial) feedback invariant

structure based on linear transformations of the state and input spaces and

linear state feedback. This is motivated by the desire to study the effect

of nonlinearities on linear feedback design. To do this we start with a

review of the invariant structure of the linear part of (7.6.1), i.e.,
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i- Ax + Bu
(7.6.2)

y - Cx.

A complete set of invariants for (7.6.2) under state and input space trans-

formations and state feedback is not known. However, a partial list is

known [44]. To exhibit this invariant structure, we use MCA. After trans-

formation (7.6.2) can be represented as

[21 ]22[1[ G22][

(7.6.3)

y - cc 0]

where R[F 12 ]Cd [G11  and ?[GI1 ] =0. Hence linear state feedback exists

which cancels FI2.

In Proposition 4.2.4 it is shown that

* p (7.6.4)

£x
Or

and in Proposition 4.2.5 that

R F2 2 fG2 2 ). (7.6.5)

This identifies the uncontrollable modes of (F22 ,G22) as the invariant zeros

(Proposition 4.2.6).

The uniqueness of 'T* and R* [ 3] identifies the pair (F 22G 22) as

related the the invariant structure of (7.6.2). Indeed, a partial list of
invariants for (7.6.2) is given by the list of invariants for (F12, G2)

| | |22
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"* under state and input space transformations and state feedback. These

invariants are well known ( 3] and consist of the contrillability indices

of (F22 ,G22 ) plus the eigenvalues of the uncontrollable modes. As just

pointed out, these eigenvalues are the invariant zeros of (7.6.2). This

is the invariant structure we seek.

7.6.2. Invariant structure

We will extend the partial invariant structure to the nonlinear

system (7.6.1). Note that the nonlinearities depend on only some of the

state variables. (In fact, we have in mind systems in which r is signifi-

cantly less than n.) In this section we will interpret C in (7.6.1b) as

an artificially introduced map which explicitly identifies the dependent

variables in the nonlinearities. In this way we identify the effect of the

nonlinearities on the linear part of the system.

We can then extend the analysis of the last section directly to

the nonlinear system (7.6.1). By defining the state and input space

transformations with respect to the linear part of (7.6.1), this system

can be represented as (7.6.1)

[ Fll F12] + F f(y)

r LF21 F22J 11 G22] [ H2]

(7.6.6)

y = [C1  o.

We can use linear state feedback to cancel FI2 Then (7.6.6) decomposes

as a nonlinear system
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y - F 1+ G 11  + Hlf (y)
(7.6.7)

driving a linear system

ir - F22xr + G22 u + F21Y + H2f(y). (7.6.8)

U Thus the invariants of the linear system (7.6.8), i.e., of (F22,G22) form a

partial listing of the invariants of the complete system. The other set of

invariants are then given by the nonlinear system (7.6.3), but they are not

known at this time.

The geometric structure of the linear system also carries over to

the nonlinear system. The idea of (A,B)-invariant subsystems has recently

been extended to nonlinear systems [91]. Using the ideas there, it is

easy to show that

sp (7.6.9)
xr

is an (A,B)-invariant manifold for the system (7.6.2).

7.6.3. Control synthesis

Clearly, the TCCD is useful here. To apply the TCCD to a nonlinear

system, we first transform (7.6.1) into the representation (7.6.6). This

guarantees the existence of a linear (partial) state feedback

u = KDxr + v (7.6.10)

where K. is chosen such that

F1 2 + GIIKD = 0, (7.6.11)
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i.e., the decoupling control. This yields a reduced order model of the

output variables y given by the aggregate subsystem

y - FIy + Gv + H1 f(y)
(7.6.12)

y - Cly.

Note that the states x do not enter into (7.6.12) so that a control can ber

q designed for the variables y using this reduced order model. The variables

xr are modeled by the residual subsystem

*r = F22xr + G22u + F2 1Y + H 2f(y). (7.6.13)

Once the (possibly nonlinear) aggregate control := k(y) has been specified

for the system (7.6.12), we can design a residual control for (7.6.13).

This synthesis procedure has several advantages. First, the

decoupling control is easily computed since it is linear. Second, the

truly nonlinear aspect of the system (7.6.1) is contained in the aggregate

subsystem. Thus, we have reduced the order of the nonlinear design and

isolated its effect on the system. While a control synthesis for this

subsystem is not, in general, easy, it has been simplified from the original

problem. Also note that this component of the contrdl can be linear or

nonlinear as we like. Thirdly, the residual subsystem in (7.6.13) is a

linear system. Thus the control of this system can be carried out using

any one of a number of standard techniquias.

As for linear systems, this procedure does not restrict the control

design for the aggregate subsystems, but it imposes the invariant structure

on the residual subsystem. This may impose an unacceptable desing constraint;

for instance, if one of the residuals fixed modes is unstable. However, by
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modifying the aggregate control (7.6.10), we can include the unstable modes

in the aggregate system. This procedure is the same as the linear case.

See Section 7.2.4.

7.6.4. Example

In this section we will illustrate the ideas above by considering

U the aircraft landing problem descirbed in Dyer and McReynolds [92]. The

problem is to design an automatic landing control for a heavy transport

aircraft during the final landing stage, the flareout phase. Typical state

equations are

xI = 0.41x I + 0.381x - 0.562x - 2.522x + 0.221f(x )

x2 = -0.066x I - 0.577x2 + x 3- .05x6 - 0.992x 7 - 0.395f(x5)

k = O.Ollx - 1.108x - 0.822x -1.264x -0.157x -3.544f(x 5) (7.6.14)
3 1 2 3 6 7 5

*4 x3

x = -12.147 + 4.049(x 4-x2)

k -ux6 1

'7 ( 2-x 7)/2

where the seven elements of the state vector x are as follows:

0 x = increment of forward speed (ft/sec)

x2 = increment of altitude ange (deg)

x = increment of pitch rate (deg/sec)

x4 = increment of pitch angel (deg)

x. = height (ft)

x6 = increment of elevator angle (deg)

0I
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x7  increment of throttle

u- increment of elevator rate (deg/sec)

u2 - input to throttle actuator

and f, the nonlinear ground effect term, is

f - 400/(3x5 + 100)-i. (7.6.15)

We want to select controls u1 and u2 such that x1 (the forward speed) and

x5 (the height) follow a prescribed trajectory while x4 (the pitch angle)

should have a final value which is positive. We shall take the simple point

of view that xI , x4, and x5 are the variables of primary interest. A

complete description of this problem can be found in (92].

We shall use the TCCD to decompose this problem into its linear

and nonlinear subsystems. Equation (7.6.14) shows that the nonlinearity

depends on the single state variable x5. We formally identify this structure

by introducing an output equation

y - [0 0 0 0 1 0 0Ix. (7.6.16)

Combine (7.6.16) with (7.6.14) and then use MCA. The resulting decomposition

is

x3K] F -0.5777 1 Y1000 0 4
-424 0 1 : [-041 -. 1 xi3

S-0.025 -0.6665 0.0413 -0.02 -0.5406 -0.0333

[0 0 1 1~2.1471
+ 0 I) + [ . 395 f(y1 ) + 0 (7.6.17)

-5 -0.0179J L 0O

. .... . 1 ..
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1 -0.1255 1.8380 -0.562 0.1261

X 4 0 0 1 0 X4

3 0.0214 -1.0173 -0.822 -1.256 x3

S1 0 0 0 0

o' 0 0.381 2.5227 0.271"

0 0 0 0 1y0+ U 1+ Y2 +  fCY)

0 0 -1.108 0.157 -3.544
'" Y3

1. 0 0 0 L0 

with

yl =  x5

Y2 = x2-x4
"(7.6.18)

Y3 = -x7- O.066x1- 0.5777x4 - -0.05x6

U2  1 U1 + u2 "

The partitioning in (7.6.17) corresponds to the partitioning in (7.6.6).

It is interesting to note that the controls seem to decompose

naturally with respect to the state decomposition in (7.6.17) in the sense

that u2 affects only the aggregate subsystem, and the first control's effect

on the aggregate is an order of magnitude less than u2.

With this in mind, the first step is to compute a decoupling

control u KDxr + v 2

* K - [-.0826 -.8204 -1.0812 -.06661. (7.6.19)

When this control is applied to (7.6.17), we obtain the aggregate subsystem
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#"2 1 0 -0.5777 1 2+ 0 2
0 -0.025 -0.6665 -0.5

+ [0.395 f(y1 ) + . (7.6.20)

L.0179J 0 J

This subsystem, which represents the nonlinear part of the model, forms a

reduced order model for the height variable y1 ( n X5 ). Thus we can design

a control v2 = L(y) so that the aircraft follows in the prescribed height

traj ectory.

Following computation of the aggregate control, we can design the

residual system control using the model

k l1" --0.1255 1.8380 -0.562 0.1261' xI -  0

4 0 0 1 0 x 0

k 3 0.0214 -1.0173 -0.822 -1.265 x3  0 1

L k6. L 0 0 0 0 . x6  1 I

0.271 0 0.381 2.522

0 0 0 0+ -3.544 f(y1) + 0 0 (7.6.21)

-3.544o -1.108 0.157

0 J -0 0 0 .

Since this system is controllable, we can select the control to meet the

specifications for forward speed (xI) and pitch angel (x4).

1 "4
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The residual subsystem (7.6.21) also contains the partial

invariant structure. In this case, the linear part of (7.6.21) is a single

input controllable pair. Thus, the invariant is the dimension of the state

space, i.e., 4. Here, the invariant structure imposes no design limitations.

U

a

0

0 - - II..
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CHAPTER 8

DYNAMIC COMPENSATION

8.1. Introduction

In the last chapter we discussed the role of the GHR and the

associated geometry in closed loop design. The result was a procedure,

called the TCCD, which produced a state feedback matrix. In fact, the

decoupling control, a key component in this procedure, depends only on

the residual states and not on the outputs. If only the outputs are avail-

able for measurement, the implementation of the control requires dynamic

compensation, i.e., an observer.

Since chained aggregation is based on observability, it is not

surprising that the GHR is useful for observer design. We shall see that

the important subspaces here are not tit which are connected to the input,

but the (C,A)-invariant subspaces described in Section 4.3. While the

theory behind observers is well known [931, the GHR provides a particularly

simple exposition of the subject [94]. The presentation here should also be

considered in the light of the many other insights the GHR provides.

Because this observer construction is based on the same ideas as

the TCCD, it has applications in the other topics discussed in Chapter 7.

In particular, we discuss a decentralized dynamic compensation scheme for

interconnected systems and an observer for the class of nonlinear syst-ems

of Section 7.6.

Finally, we discuss the integration of the ideas of near unobserv-

ability and the TCCD. It seems clear that the GHR provides a framework

for the introduction of the topological notions of near unobservability into
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compensator design. The benefits of such a theory are equally obvious.

Therefore, we briefly discuss one possible implication of this theory. This

material should be considered as an outline for future work.

In Section 8.2 we discuss observer design in the GHR framework.

Section 8.3 applies these ideas to interconnected systems and nonlinear

I systems. Section 8.4 uses the ideas of near unobservability to discuss static

output feedback and observer design.

8.2. Observers

8.2.1. Residual state observers

After one step of chained aggregation, let (C.1)-(C.2) be repre-

sented by

r [ GR CRI] + [B ]
(8.2.1)

y= (C1  0

With respect to this basis, let any feedback matrix be

u [L G LRI [ (8.2.2)

xr

Let the compensator have the structureI

x = Mx + Ry + Ov
r r (8.2.3)

u-Nx + Py +v

#r
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with r ER n -r. With some foresight we choose

Rm mR + BRLR

L BGR C1 -(B R+ BRLl)Cl

N L 2 (8.2.4)

iiPl L 1,

Q = BR.

Then the closed loop system becomes

-G CR BGL2 G'

B x + BR  v(8.2.5)
r GR AGR BL2 Xr [ vL ri GR 0 ;- XLr L R

where AG, AG+ B Ll. To show that we have accomplished the desired compen-
C GV

sation, introduce the state space transformation

y 1 0 0 Y

= 0 [ 0 x (8.2.6)

r r

In these coordinates, (8.2.5) becomes

4

4
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y G R BGL2 y _BG'[ijmr B G AR B RL2J xJ+ BR~ V' (8.2.7)

In (8.2.7) the compensator states can be interpreted as error states

=e-Xr-xr, which are governed by the dynamics of the residual. If these

dynamics are sufficiently fast and stable (assume this for the moment), then

the state of the system is governed by the desired closed loop matrix. If

we can show that the compensator dynamics can be chosen arbitrarily, then

we have achieved our desired design. To see this consider (8.2.1).

Introduce the state space transformation

(8.2.8)z X I xr

Substituting (8.2.8) into (8.2.1)

Fi GCR X CR i [BGlu. (8.2.9)

* ZL GR YRI RJL + LBeX+ GI

Note that this transformation preserves the information structuring in

* (8.2.1) for any X. It is easily seen that if (8.2.1) is observable,

then so is the pair (ARCR). Hence, the poles of AR+XCR can be placed

arbitrarily by proper selection of X. In particular, we can choose them suf-

* ficiently fast and stable. Then (8.2.9) replaces (8.2.1) in the design

scheme above.
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The transformation in (8.2.8) was used in the study of (C,A)-

invariant subspaces in Section 4.3. In fact, this process of selecting

observer poles has the geometrical interpretation of selecting a (C,A)-

invariant subspace to have the basis

(8.2.10)

U0
(see Section 4.3). Note that the dynamics of the observer are determined by

the induced map of A+KC on the factor space X modlx where K makesaP X

(A+KC)-invariant [95]. Thus by selecting a basis which displays a larger

(C,A)-invariant subspace, we can construct a smaller order observer to

estimate part of the residual (unmeasured) states.

8.2.2. Partial residual state observers

The discussion of (C,A)-invariant subspaces and the GHR in

Section 4.3 shows how part of the residual state can be reconstructed. The

(C,A)-invariant subspaces for (8.2.1) take the forma aly whered y is an

A R-invariant subspace. (Recall that the subspaces ay are dependent on VX.)

Define a state space transformation

I
(8.2.11)

such that in these new coordinates, (8.2.1) has the form

* -1



152

B I B 2(8.2.12)

! 21 4- GR2 0 Aft2 .BR2..

Hence, T simply identifies an ARinvariant subspace. Now assume the feed-

back is of the form

u = L,y + L2 2 + v. (8.2.13)

Again we use the compensator structure in (8.2.3) with d(kr)- d(&2). The

parameters in (8.2.3) are given by

I AR2+ BR 2 L 2 -

L = (BGR2+B L )C 1 = ERC 1
G2 R2 1 1 GR2 1

N = 2  (8.2.14)

P = 1

Q = BR2.

The closed loop system becomes

y AG  CRI CR2 BGL2  y BGEl BGRl ARI AR1R2 2 i BR1

BG~ A~ A~, R 1+ RiV. (8.2.15)

&2 BGR2  0 AR2  BR2L 2 BR2

r. BGR 2  0 0 i2 Xr LBR2J

I
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To see that we have achieved the desired compensation, again we introduce

error coordinates as in (8.2.6) where &2 replaces x and the dimensions

change accordingly. In these new coordinates (8.2.15) becomes

" ;-G CRI R2 BGL2 B G
g~ % %2 BRlL2 BR

. B + v. (8.2.16)
2 B G R 0 R2 2 2 BR2

0 0 0 2  • 0

By proper selection of X and T we can choose the observer dynamics and

achieve the desired closed loop compensation.

The question now is how to use this flexibility. This shall be

dealt with in later sections.

8.3. Observers and the TCCD

8.3.1. Interconnected systems

The observer construction of the last section is directly related

to the TCCD because we started with a common system representation.

Therefore, we turn to the question of decentralized dynamic system

compensation (94]. Consider again the system representation introduced in

Section 7.3, equation (7.3.1). We will assume this representation was

obtained after one step of chained aggregation. Suppose also that with

respect to this basis, the control is given by (7.3.3)-(7.3.5).

To construct an observer for this system, simply substitute the

system parameters in (7.3.1) into the observer equations (3.2.3)-(3.2.4).
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CHowever, because of the special structure of (7.3.1), the observer decom-

poses into two subsystems, given by

*i i -i 3-
"i (ki+BRiKi)x + (SGRiAi) GRi,3-i ARi GR,3_i)-

+ [B ARiBRi]v1  (8.3.1)

[Ki Ai 1KF -i

Ai = + I Ai,3-i i 31+ID

[I i KGRi KGRi,3-iK Ri

This is immediately recognized as an observer for each of the subsystems

(7.3.2). Thus this approach yields a partially decentralized dynamic

compensator such that each of the local subsystems can choose its own

observer dynamics as discussed in Section 8.2.

Each local compensator in (8.3.1) requires knowledge of all the

interaction variables y, but not of the other subsystem's residual states.

Thi. design framework does not appear to relax this constraint on the

information exchange except in the special case when B GR2 B GR21= 0.

However, in this case we are not free to place the compensator poles (in

general, the transformation (8.2.8) will introduce coupling between the

compensators). If it turns out that the open loop residual poles are

suitable observer poles, then we can use this compensation scheme. But this

implies that the residual variables do rot contribute much to the open loop

system, and suggests that the original model can be reduced to the aggregate

subsystem alone.
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8.3.2. A nonlinear observer

It should be clear now how to construct observers from the GHR.

We note here that this structure can also be extended to the class of

nonlinear systems discussed in Section 7.6 [83]. Given the system (7.6.1),

suppose that y(t) represents the measured outputs. After one step of

chained aggregation let the system be represented as

y F 11 F l, 1 D Y

:k ] F21 F22
(8.3.2)

y= [C1  O[ ]

Then using the observer construction of Section 8.2, the states x are

estimated by

xr = F22xr + F21C1 y + D2f(y) + B2u. (8.3.3)

This is a linear observer whose dynamics can be selected by the method of

Section 8.2. This seemingly simple construction hides the fact that it is

difficult to build an observer for any nonlinear system.

I

8.4. Near Unobservabilitv in Comoensation

8.4.1. Output feedback

In Section 8.2, we showed how to construct an observer which

estimated only some of the residual states. In this section we exploit
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(that freedom by discussing the role of near unobservability in compensation

schemes. The key idea is to analyze how static output feedback affects the

closed loop system poles.

We shall discuss systems represented by the second generic

case (Section 4.2.3). After one step of chained aggregation the system

can be represented as

(8.4.1)

y m [I 0.
x r

Thus, X(A4) represents the invariant zeros of (8.4.1). Consider output

feedback of the form

u Ly. (8.4.2)

Then the closed loop system has the form

*A [ lBLA ZL A:][:r (8.4.3)

Here we note that by using Theorem 3.2.3, as RL9 - , the eigenvalues of

(8.4.3) go to infinity and A(A 4 ) (cf., the analysis in Section 3.5), as

is well known.

I

U
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C
Suppose we introduce the orthogonal transformation

[n 11 12] -y j (8.4.4)

Lr P21 P22  xJ Lr Xr

where P is described in (3.2.7) and we choose P such that

sp (8.4.5)Or

is A-invariant. Then we may write (8.4.3) in the new coordinates as

1110 11 *111,P~ T',,F (8.4.6)
x ABFPl P BFP x4

r] fl3 A4 LP2B P21B1 11 I

where w.e have separated out the effect of the feedback. In this context

we can think of the feedback as a perturbation of A. Using exactly the

same techniques as we used for near unobservability, Stewart [26] has

given perturbation theorems as follows:

Theorem 8.4 [261: Let A and E be nxn matrices given as

A . A E = [ E E 2 1
A 3  A4  E3  E 4

Let

6 = sep(A,,A4 ) E)IE1 -IIE41.
Ig

4i -I ... I ..
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1E2 1 (A 3 1 + I E21 1

a 2 -4

there is a matrix P satisfying

21E 2I

I 11 < 6

such that

PI(I + PT-12I

span an invariant subspace of A+E. Furthermore, X(A+E) are given as the

disjoint union of

( I+P 1PT) 1/2 [AI+EIP1 (A3+E3) ](i+P P T)-/2,

X((I+PTP 1 )- '/2 [A 4 +E4 +(A 3 +E3- P1 (I+PTP Y2) -

*We would like to apply Theorem 8.4.1 to (8.4.6) when the original

system (8.4.1) is nearly unobservable, i.e., when IPg defining (8.4.4) is

* small. Recall that

Pi .* I, Pij -.0 as P - 0 ij (8.4.7)

* (see (3.2.7)). Hence, it follows from (8.4.6) that

E 1  = P 1 B L P I 1 - .B L a s P -0
(8.4.8)

E, PBLT - 0o as P
E4 = P21B LP21

In fact, E4 tends to zero quadratically! Assuming Theorem 8.4.1 holds, it

follows that the closed loop eigenvalues tend to X(A +BIL) and X(A4).
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CThe point of this analysis is to describe the quantitative effect

of static output feedback on the two sets of open loop poles identified

in (8.4.6) for nearly unobservable systems. Applying Theorem 8.4.1 to

(8.4.6), we see that the poles are modified by 1) an kdditive correction

term whose effect is described in (8.4.8), and 2) a term in P with the
1

structure (A3+E3)P1. Now E3 contains the output feedback contribution which

is linear in P. The other parameter here is A If A3 is large then the

output feedback (8.4.2) is expected to have a large effect on the eigenvalues

of A4. On the other hand, if A is small, then so is A3 (since the system

is assumed to be nearly unobservable). This has two interpretations. By

Section 3.4, this implies the open loop system is weakly observable if

there is an eigenvalue separation. Secondly, by Section 4.4 there is almost

a pole-zero cancallation. In this case it is well known that large control

energy is needed to move the open loop poles.

The above analysis easily extends to any i-th unobservable subspace

£I. Simply redefine the feedback matrix partitioning in (8.4.6) along with

P and P1.

8.4.2. Observer Design

From the analysis of near unobservability, if X. is nearly1

unobservable, it is near a A-invariant subspace. Denote the eigenvalues

of this subspace by A2 and the rest of the eigenvalues of A by AI. From the

analysis above, we see that static output feedback strongly affects I but

not A . There are two evaluations of A . First, since these eigenvalues

contribute little to the system (they are nearly unobservable) and they

are not affected much by feedback to the other modes, we can safely ignore

4
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them. That is, we do a modal reduction, as described in Section 6.3, and

apply the design techniques above to it.

On the other hand, suppose the modes associated with A 2are

important and cannot be ignored. Since to move them would require large

static gains, we must use a dynamic compensator. The modes associated with

Al, on the other hand, are heavily influenced by static feedback. This

suggests that we build an observer that estimates only the nearly unobserv-

able modes.

Both of these points of view fits into the observer framework of

Section 8.2. Indeed it tells us how to select the transformation T in

(8.2.11) to obtain the observer parameters in (8.2.14). If the nearly

unobservable states are to be ignored, in (8.2.12) we select X(A Rl)= A A2.

on the other hand, if the nearly unobservable modes are to be measures, we

have X(A-R2)A 2.
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CHAPTER 9

CONCLUSION

This thesis has presented a detailed study of the GHR and chained

aggregation with applications to standard problems in linear system theory,

such as model reduction and compensator design. In retrospect, the work

should be viewed as a whole. Then it becomes clear that the GHR is a

unifying framework in which the fundamental structure of linear systems is

exposed. Thus, it is shown that the GHR is useful in many problems and it

is believed it will prove useful in many more.
I

The theoretical background for this success is the twofold inter-

pretation of the GHR in both geometric and matrix terms. This allows

fundamental properties to be stated concretely while still retaining their

abstract nature. For example, the fundamental result is that the GHR

explicitly identifies the i-th unobservability subspaces {L i}. The matrix

representation is useful because it allows us to estimate distances

between subspaces and so introduce near unobservability. The fact that this

is a useful topology may be attributed to the GHR. The abstract charac-

4 terization of the GHR is useful because it connects the open loop {L}

subspaces to their closed loop counterparts, (A,B)-invariant subspaces and

so with the geometric literature. In this way we are given fundamental

interpretations of the design procedures which result from the GHR.

The analysis of the GHR concentrates in three areas. The first

is the topological characterization of the subspaces (Li} and invariant

spaces, i.e., near unobservability. The second area is the behavior of {.}
1

under the action of the input. The third area is the system decomposition
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induced by the GHR. These are treated, respectively, in Chapters 3, 4,

and 5.

Even though they are given independent treatment, these topics

are intimately related through the GHR. In fact, combinations of these

ideas lend insight into well-known problems. In Chapter 6 model reduction is

discussed by combining system decomposition with near unobservability.U
Hence, we are able to clarify the GHR in model reduction, the original use

of the GHR. By combining the system decomposition with the closed loop

subspaces, insight is gained into a recent control design procedure, the TCCD.

In fact, we are able to connect it with geometric design procedures and

extend the TCCD to various types of interconnected systems, optimal control,

output decoupling, nonlinear systems, and observer design. Because of the

recent introduction of near unobservability, the integration of all three

aspects of the GHR is still in preliminary stages. However, this direction

of research shows great promise. A preliminary application is given in

Chapter 8 to reduced order compensators.

Because of the fundamental nature of this work, opportunities

0 for future research abound. Perhaps the most promising is the unification
rL

of near unobservability, the closed loop subspaces t i } and system decompo-i

sition into a complete compensator design theory. The GHR framework should

* unify and clarify many proposed design procedures. The almost natural

presence of time scales and numerical analysis background of near unobserv-

ability should give this theory breadth and depth. In addition to linear

systems, classes of nonlinear systems apparently fit in this framework.

Thus, the GHR is a natural vehicle for generalizing linear system concepts

to nonlinear systems, particularly the geometrical aspects. Finally, we



163

note that the numerical analysis of linear systems has become a topic of

interest in its own right. The close connection of chained aggregation and

MCA to recent numerical studies indicates great promise for the-ideas of

the GHR to have serious computation applications. This by no means exhausts

the possibilities for future research. Many other directions are indicated

in the text.
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APPENDIX

TWO AREA POWER SYSTEM MDEL

A two area power system with each area containing two thermal plants

is constructed from Calovic [96]. The system is modeled by

"k - Ax + Bu + Ew
(A.1)

y = Cx

19 -4 2 3
where xe. , uR , u2R and yE . The state, ccntrol and outputs variables

have the following physical meanings:

xl' x12 " valve position displacement in first thermal unit of area I and 2.

x 2 ' X1 3 = power output displacement of HP turbine in first thermal unit of
area 1 and 2.

x3 , x14 - power output displacement of IP turbine in first thermal unit of
area I and 2.

x4 , x15 - power output displacement of LP turbine in first thermal unit of
area I and area 2.

x5, x16 - valve position displacement in second thermal unit of area 1 and
2.

x6 , x17 - power output displacement of HP turbine in second thermal unit
of area I and 2.

x 7, x18 - power displacement of I? turbine in second thermal unit of area
1 and 2.

x8 , x19 - power displacement of LP turbine in second thermal unit of area
1 and 2.

X9 , x11 - frequency deviation of area 1 and 2.

* x10 , tie-line power flow connecting area i and 2.

u1, u3 - set point adjustment of first thermal unit in area 1 and 2.
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u2 , u4 = set point adjustment of second thermal unit in area 1 and 2.

S 1 w2 - load disturbance of area I and 2.

Y- a frequency deviation of area 1.

Y2 - tie-line power flow of area 1 and 2.

Y3 n frequency deviation of area 2.

The system matrices (A,BE,C) are given in (A.2-A.3). The parameters for the

first area (the second being identical in structure) are as follows:

r - permanent speed droop

Ts - time constant of the system pilot valve-servomotor turbine gates

- time constant of the turbine; characterizes the delay between controlu

valve action and turbine nozzle action

Tr - time constant characterizing the time delay in the HP turbine

rehearter and reheat piping

Tn - time constant characterizing the time delay in the IP turbine and

crossover piping

€- fraction of total power generated by HP turbine

c- fraction of total power generated by IP turbine

aT - coefficient chacterizing the influence of frequency variation on

turbine output variation (turbine self-regulation)

kt - propor:ionality factor connecting the control valves position

variation and HP turbine output variation in the steady state

(k for TP and LP turbine are very close to 1 since power variations

of these turbines in the steady state are equal)

i - par:icipation of the unit in total system output
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-t

e, - load turbine and system self-regulation coefficient not includingpI
the participation of the unit under consideration (lead characteristic)

2
e -e " I:le T

P i- r r 2
T - system acceleration time constant T - Tp + iEIe LTG

Tp - time constant due to the mechanical inertia of the rotating masses in

the load

STG - unit acceleration time constant, T.G - 2Hi

H - inertia time constant.

The non-zero elements of the matrices A, B, C, and E expressed as functions

of the physical parameters are:

r1
a 11 T a 1 9  7

ktI 1
a21 T- a2 2

=

21 Tu 1 u

a32 T a 33 T
r 

r I

1 1
a43 a 44 TnI  n 1

a r2  a 1s53" T- S79 = T-T-s 2  S2

kt 2  1
a 66 Tu 2  u 2

r 2-" a. 7 = r 2-

, I I I I I I I17 -IT
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T87 a 88 T
2 n

ecvc elc,(1 "-c) el (1-c s ) (1-cv )

a 1- '1 v t1CSS V1

92 T a93 T a94 T

2V2e2Cs2 V2  e2 (1"ca2) (1c v2
a96 T a97 T a98 T

a99 -- e/T

b 1 b5  . e
11 T2 T

The parameters h1 2 , h21 , h2 3, and h32 describe the tie-line dynamics and

interconnection with the two areas.

AGGREGATED MODEL

The following values are obtained for the first area (i=!) in

equation (5.4.8) in terms of the parameters in (A.2):

f 1 1  a4 f22 ' a 3 3
f23 (a4 3 a9 4  a9 4 a 9 3 +a 9 3a 2 3 )a3 2  (a2 2 

a 9  a 9 3 - , 4 4 a
92 ) (a 2 2  a2 3 )

* f24 ' (a22a92 +a32 a 9 3 - a4a 9 2 )a 2 1 +a 92 a 2 1 (all -a 3 3 )

4C (a -a, )(a a aaA25 88" J3 88a98 -

6e f26 (a 8 8 a9 8 -a a 9 8 )a 8 7 + (a77"'33)(a7797;a88a98"a44a97)

(a a +a a -a a,) (a )(a a,+a a -a, a)
f27 (a 7 7a 9 7  8898 a4497 76 (a66 33)9666 97 76 496)

6
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f 28 a (a 9 6a 6 6  97 a76 a4 4 a 9 6 )a 65 + (a 5 5 - a 3 3 ) (a 6 5a 9 6 )

f33 a a22 f34 a 21 f44 - a.I

f55 a 88 f56 "a 8 7  f a66 a 7 7  f67 a 78

f 7 7  a 6 6  f7S a 65 f88 a a55

1 21  a 92a21 b1 4 g2 2 -a 6 5a 9 6b 52

841 w b14 852 - b5 2

d 21 m a92 a2 1 a1 9 +a 65 a96 a59

d4 1 "a 1 9 d 8 1 a 5 9
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